ﻻ يوجد ملخص باللغة العربية
Given a closed four-manifold $X$ with an indefinite intersection form, we consider smoothly embedded surfaces in $X setminus $int$(B^4)$, with boundary a knot $K subset S^3$. We give several methods to bound the genus of such surfaces in a fixed homology class. Our techniques include adjunction inequalities and the $10/8 + 4$ theorem. In particular, we present obstructions to a knot being H-slice (that is, bounding a null-homologous disk) in a four-manifold and show that the set of H-slice knots can detect exotic smooth structures on closed $4$-manifolds.
Given a 3-manifold M containing an incompressible surface Q, we obtain an inequality relating the Heegaard genus of M and the Heegaard genera of the components of M - Q. Here the sum of the genera of the components of M - Q is bounded above by a line
This paper is devoted to the classification of the infinite families of Teichmuller curves generated by Prym eigenforms of genus 3 having a single zero. These curves were discovered by McMullen. The main invariants of our classification is the discri
We prove that the expected value of the ratio between the smooth four-genus and the Seifert genus of two-bridge knots tends to zero as the crossing number tends to infinity.
We refine prior bounds on how the multivariable signature and the nullity of a link change under link cobordisms. The formula generalizes a series of results about the 4-genus having their origins in the Murasugi-Tristram inequality, and at the same
Let $W$ be a compact smooth $4$-manifold that deformation retract to a PL embedded closed surface. One can arrange the embedding to have at most one non-locally-flat point, and near the point the topology of the embedding is encoded in the singularit