ﻻ يوجد ملخص باللغة العربية
We prove an asymptotic crystallization result in two dimensions for a class of nonlocal particle systems. To be precise, we consider the best approximation with respect to the 2-Wasserstein metric of a given absolutely continuous probability measure $f mathrm{d}x$ by a discrete probability measure $sum_i m_i delta_{z_i}$, subject to a constraint on the particle sizes $m_i$. The locations $z_i$ of the particles, their sizes $m_i$, and the number of particles are all unknowns of the problem. We study a one-parameter family of constraints. This is an example of an optimal location problem (or an optimal sampling or quantization problem) and it has applications in economics, signal compression, and numerical integration. We establish the asymptotic minimum value of the (rescaled) approximation error as the number of particles goes to infinity. In particular, we show that for the constrained best approximation of the Lebesgue measure by a discrete measure, the discrete measure whose support is a triangular lattice is asymptotically optimal. In addition, we prove an analogous result for a problem where the constraint is replaced by a penalization. These results can also be viewed as the asymptotic optimality of the hexagonal tiling for an optimal partitioning problem. They generalise the crystallization result of Bourne, Peletier and Theil (Communications in Mathematical Physics, 2014) from a single particle system to a class of particle systems, and prove a case of a conjecture by Bouchitt{e}, Jimenez and Mahadevan (Journal de Mathematiques Pures et Appliquees, 2011). Finally, we prove a crystallization result which states that optimal configurations with energy close to that of a triangular lattice are geometrically close to a triangular lattice.
What type of delegation contract should be offered when facing a risk of the magnitude of the pandemic we are currently experiencing and how does the likelihood of an exogenous early termination of the relationship modify the terms of a full-commitme
This paper studies a class of non$-$Markovian singular stochastic control problems, for which we provide a novel probabilistic representation. The solution of such control problem is proved to identify with the solution of a $Z-$constrained BSDE, wit
This paper introduces and studies the optimal control problem with equilibrium constraints (OCPEC). The OCPEC is an optimal control problem with a mixed state and control equilibrium constraint formulated as a complementarity constraint and it can be
In this article, we derive first-order necessary optimality conditions for a constrained optimal control problem formulated in the Wasserstein space of probability measures. To this end, we introduce a new notion of localised metric subdifferential f
A class of optimal control problems of hybrid nature governed by semilinear parabolic equations is considered. These problems involve the optimization of switching times at which the dynamics, the integral cost, and the bounds on the control may chan