ﻻ يوجد ملخص باللغة العربية
This paper studies a class of non$-$Markovian singular stochastic control problems, for which we provide a novel probabilistic representation. The solution of such control problem is proved to identify with the solution of a $Z-$constrained BSDE, with dynamics associated to a non singular underlying forward process. Due to the non$-$Markovian environment, our main argumentation relies on the use of comparison arguments for path dependent PDEs. Our representation allows in particular to quantify the regularity of the solution to the singular stochastic control problem in terms of the space and time initial data. Our framework also extends to the consideration of degenerate diffusions, leading to the representation of the solution as the infimum of solutions to $Z-$constrained BSDEs. As an application, we study the utility maximisation problem with transaction costs for non$-$Markovian dynamics.
We study a class of infinite-dimensional singular stochastic control problems with applications in economic theory and finance. The control process linearly affects an abstract evolution equation on a suitable partially-ordered infinite-dimensional s
We establish a generalization of Noether theorem for stochastic optimal control problems. Exploiting the tools of jet bundles and contact geometry, we prove that from any (contact) symmetry of the Hamilton-Jacobi-Bellman equation associated to an opt
We study the problem of optimally managing an inventory with unknown demand trend. Our formulation leads to a stochastic control problem under partial observation, in which a Brownian motion with non-observable drift can be singularly controlled in b
In this paper we study a Markovian two-dimensional bounded-variation stochastic control problem whose state process consists of a diffusive mean-reverting component and of a purely controlled one. The main problems characteristic lies in the interact
In this paper we study a class of combined regular and singular stochastic control problems that can be expressed as constrained BSDEs. In the Markovian case, this reduces to a characterization through a PDE with gradient constraint. But the BSDE for