ترغب بنشر مسار تعليمي؟ اضغط هنا

Acceptability maximization

88   0   0.0 ( 0 )
 نشر من قبل Gabriela Kov\\'a\\v{c}ov\\'a
 تاريخ النشر 2020
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

The aim of this paper is to study the optimal investment problem by using coherent acceptability indices (CAIs) as a tool to measure the portfolio performance. We call this problem the acceptability maximization. First, we study the one-period (static) case, and propose a numerical algorithm that approximates the original problem by a sequence of risk minimization problems. The results are applied to several important CAIs, such as the gain-to-loss ratio, the risk-adjusted return on capital and the tail-value-at-risk based CAI. In the second part of the paper we investigate the acceptability maximization in a discrete time dynamic setup. Using robust representations of CAIs in terms of a family of dynamic coherent risk measures (DCRMs), we establish an intriguing dichotomy: if the corresponding family of DCRMs is recursive (i.e. strongly time consistent) and assuming some recursive structure of the market model, then the acceptability maximization problem reduces to just a one period problem and the maximal acceptability is constant across all states and times. On the other hand, if the family of DCRMs is not recursive, which is often the case, then the acceptability maximization problem ordinarily is a time-inconsistent stochastic control problem, similar to the classical mean-variance criteria. To overcome this form of time-inconsistency, we adapt to our setup the set-valued Bellmans principle recently proposed in cite{KovacovaRudloff2019} applied to two particular dynamic CAIs - the dynamic risk-adjusted return on capital and the dynamic gain-to-loss ratio. The obtained theoretical results are illustrated via numerical examples that include, in particular, the computation of the intermediate mean-risk efficient frontiers.



قيم البحث

اقرأ أيضاً

We study the problem of active portfolio management where an investor aims to outperform a benchmark strategys risk profile while not deviating too far from it. Specifically, an investor considers alternative strategies whose terminal wealth lie with in a Wasserstein ball surrounding a benchmarks -- being distributionally close -- and that have a specified dependence/copula -- tying state-by-state outcomes -- to it. The investor then chooses the alternative strategy that minimises a distortion risk measure of terminal wealth. In a general (complete) market model, we prove that an optimal dynamic strategy exists and provide its characterisation through the notion of isotonic projections. We further propose a simulation approach to calculate the optimal strategys terminal wealth, making our approach applicable to a wide range of market models. Finally, we illustrate how investors with different copula and risk preferences invest and improve upon the benchmark using the Tail Value-at-Risk, inverse S-shaped, and lower- and upper-tail distortion risk measures as examples. We find that investors optimal terminal wealth distribution has larger probability masses in regions that reduce their risk measure relative to the benchmark while preserving the benchmarks structure.
This paper studies the retirement decision, optimal investment and consumption strategies under habit persistence for an agent with the opportunity to design the retirement time. The optimization problem is formulated as an interconnected optimal sto pping and stochastic control problem (Stopping-Control Problem) in a finite time horizon. The problem contains three state variables: wealth $x$, habit level $h$ and wage rate $w$. We aim to derive the retirement boundary of this wealth-habit-wage triplet $(x,h,w)$. The complicated dual relation is proposed and proved to convert the original problem to the dual one. We obtain the retirement boundary of the dual variables based on an obstacle-type free boundary problem. Using dual relation we find the retirement boundary of primal variables and feed-back forms of optimal strategies. We show that if the so-called de facto wealth exceeds a critical proportion of wage, it will be optimal for the agent to choose to retire immediately. In numerical applications, we show how de facto wealth determines the retirement decisions and optimal strategies. Moreover, we observe discontinuity at retirement boundary: investment proportion always jumps down upon retirement, while consumption may jump up or jump down, depending on the change of marginal utility. We also find that the agent with higher standard of life tends to work longer.
In this paper,we study the individuals optimal retirement time and optimal consumption under habitual persistence. Because the individual feels equally satisfied with a lower habitual level and is more reluctant to change the habitual level after ret irement, we assume that both the level and the sensitivity of the habitual consumption decline at the time of retirement. We establish the concise form of the habitual evolutions, and obtain the optimal retirement time and consumption policy based on martingale and duality methods. The optimal consumption experiences a sharp decline at retirement, but the excess consumption raises because of the reduced sensitivity of the habitual level. This result contributes to explain the retirement consumption puzzle. Particularly, the optimal retirement and consumption policies are balanced between the wealth effect and the habitual effect. Larger wealth increases consumption, and larger growth inertia (sensitivity) of the habitual level decreases consumption and brings forward the retirement time.
This paper solves the consumption-investment problem under Epstein-Zin preferences on a random horizon. In an incomplete market, we take the random horizon to be a stopping time adapted to the market filtration, generated by all observable, but not n ecessarily tradable, state processes. Contrary to prior studies, we do not impose any fixed upper bound for the random horizon, allowing for truly unbounded ones. Focusing on the empirically relevant case where the risk aversion and the elasticity of intertemporal substitution are both larger than one, we characterize the optimal consumption and investment strategies using backward stochastic differential equations with superlinear growth on unbounded random horizons. This characterization, compared with the classical fixed-horizon result, involves an additional stochastic process that serves to capture the randomness of the horizon. As demonstrated in two concrete examples, changing from a fixed horizon to a random one drastically alters the optimal strategies.
The aim of this short note is to establish a limit theorem for the optimal trading strategies in the setup of the utility maximization problem with proportional transaction costs. This limit theorem resolves the open question from [4]. The main idea of our proof is to establish a uniqueness result for the optimal strategy. Surprisingly, up to date, there are no results related to the uniqueness of the optimal trading strategy. The proof of the uniqueness is heavily based on the dual approach which was developed recently in [6,7,8].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا