ترغب بنشر مسار تعليمي؟ اضغط هنا

A Note on Utility Maximization with Proportional Transaction Costs and Stability of Optimal Portfolios

73   0   0.0 ( 0 )
 نشر من قبل Yan Dolinsky
 تاريخ النشر 2021
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

The aim of this short note is to establish a limit theorem for the optimal trading strategies in the setup of the utility maximization problem with proportional transaction costs. This limit theorem resolves the open question from [4]. The main idea of our proof is to establish a uniqueness result for the optimal strategy. Surprisingly, up to date, there are no results related to the uniqueness of the optimal trading strategy. The proof of the uniqueness is heavily based on the dual approach which was developed recently in [6,7,8].



قيم البحث

اقرأ أيضاً

This paper solves the consumption-investment problem under Epstein-Zin preferences on a random horizon. In an incomplete market, we take the random horizon to be a stopping time adapted to the market filtration, generated by all observable, but not n ecessarily tradable, state processes. Contrary to prior studies, we do not impose any fixed upper bound for the random horizon, allowing for truly unbounded ones. Focusing on the empirically relevant case where the risk aversion and the elasticity of intertemporal substitution are both larger than one, we characterize the optimal consumption and investment strategies using backward stochastic differential equations with superlinear growth on unbounded random horizons. This characterization, compared with the classical fixed-horizon result, involves an additional stochastic process that serves to capture the randomness of the horizon. As demonstrated in two concrete examples, changing from a fixed horizon to a random one drastically alters the optimal strategies.
A risk-averse agent hedges her exposure to a non-tradable risk factor $U$ using a correlated traded asset $S$ and accounts for the impact of her trades on both factors. The effect of the agents trades on $U$ is referred to as cross-impact. By solving the agents stochastic control problem, we obtain a closed-form expression for the optimal strategy when the agent holds a linear position in $U$. When the exposure to the non-tradable risk factor $psi(U_T)$ is non-linear, we provide an approximation to the optimal strategy in closed-form, and prove that the value function is correctly approximated by this strategy when cross-impact and risk-aversion are small. We further prove that when $psi(U_T)$ is non-linear, the approximate optimal strategy can be written in terms of the optimal strategy for a linear exposure with the size of the position changing dynamically according to the exposures Delta under a particular probability measure.
164 - Theodoros Tsagaris 2008
We consider the Brownian market model and the problem of expected utility maximization of terminal wealth. We, specifically, examine the problem of maximizing the utility of terminal wealth under the presence of transaction costs of a fund/agent inve sting in futures markets. We offer some preliminary remarks about statistical arbitrage strategies and we set the framework for futures markets, and introduce concepts such as margin, gearing and slippage. The setting is of discrete time, and the price evolution of the futures prices is modelled as discrete random sequence involving Itos sums. We assume the drift and the Brownian motion driving the return process are non-observable and the transaction costs are represented by the bid-ask spread. We provide explicit solution to the optimal portfolio process, and we offer an example using logarithmic utility.
We derive new results related to the portfolio choice problem for power and logarithmic utilities. Assuming that the portfolio returns follow an approximate log-normal distribution, the closed-form expressions of the optimal portfolio weights are obt ained for both utility functions. Moreover, we prove that both optimal portfolios belong to the set of mean-variance feasible portfolios and establish necessary and sufficient conditions such that they are mean-variance efficient. Furthermore, an application to the stock market is presented and the behavior of the optimal portfolio is discussed for different values of the relative risk aversion coefficient. It turns out that the assumption of log-normality does not seem to be a strong restriction.
We investigate the general structure of optimal investment and consumption with small proportional transaction costs. For a safe asset and a risky asset with general continuous dynamics, traded with random and time-varying but small transaction costs , we derive simple formal asymptotics for the optimal policy and welfare. These reveal the roles of the investors preferences as well as the market and cost dynamics, and also lead to a fully dynamic model for the implied trading volume. In frictionless models that can be solved in closed form, explicit formulas for the leading-order corrections due to small transaction costs are obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا