ترغب بنشر مسار تعليمي؟ اضغط هنا

Few-Shot Text Generation with Pattern-Exploiting Training

94   0   0.0 ( 0 )
 نشر من قبل Timo Schick
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Providing pretrained language models with simple task descriptions or prompts in natural language yields impressive few-shot results for a wide range of text classification tasks when combined with gradient-based learning from examples. In this paper, we show that the underlying idea can also be applied to text generation tasks: We adapt Pattern-Exploiting Training (PET), a recently proposed few-shot approach, for finetuning generative language models on text generation tasks. On several text summarization and headline generation datasets, our proposed variant of PET gives consistent improvements over a strong baseline in few-shot settings.

قيم البحث

اقرأ أيضاً

Large-scale pretrained language models have led to dramatic improvements in text generation. Impressive performance can be achieved by finetuning only on a small number of instances (few-shot setting). Nonetheless, almost all previous work simply app lies random sampling to select the few-shot training instances. Little to no attention has been paid to the selection strategies and how they would affect model performance. In this work, we present a study on training instance selection in few-shot neural text generation. The selection decision is made based only on the unlabeled data so as to identify the most worthwhile data points that should be annotated under some budget of labeling cost. Based on the intuition that the few-shot training instances should be diverse and representative of the entire data distribution, we propose a simple selection strategy with K-means clustering. We show that even with the naive clustering-based approach, the generation models consistently outperform random sampling on three text generation tasks: data-to-text generation, document summarization and question generation. We hope that this work will call for more attention on this largely unexplored area.
In this paper, we formulate a more realistic and difficult problem setup for the intent detection task in natural language understanding, namely Generalized Few-Shot Intent Detection (GFSID). GFSID aims to discriminate a joint label space consisting of both existing intents which have enough labeled data and novel intents which only have a few examples for each class. To approach this problem, we propose a novel model, Conditional Text Generation with BERT (CG-BERT). CG-BERT effectively leverages a large pre-trained language model to generate text conditioned on the intent label. By modeling the utterance distribution with variational inference, CG-BERT can generate diverse utterances for the novel intents even with only a few utterances available. Experimental results show that CG-BERT achieves state-of-the-art performance on the GFSID task with 1-shot and 5-shot settings on two real-world datasets.
Neural table-to-text generation models have achieved remarkable progress on an array of tasks. However, due to the data-hungry nature of neural models, their performances strongly rely on large-scale training examples, limiting their applicability in real-world applications. To address this, we propose a new framework: Prototype-to-Generate (P2G), for table-to-text generation under the few-shot scenario. The proposed framework utilizes the retrieved prototypes, which are jointly selected by an IR system and a novel prototype selector to help the model bridging the structural gap between tables and texts. Experimental results on three benchmark datasets with three state-of-the-art models demonstrate that the proposed framework significantly improves the model performance across various evaluation metrics.
We propose a shared task on training instance selection for few-shot neural text generation. Large-scale pretrained language models have led to dramatic improvements in few-shot text generation. Nonetheless, almost all previous work simply applies ra ndom sampling to select the few-shot training instances. Little to no attention has been paid to the selection strategies and how they would affect model performance. The study of the selection strategy can help us to (1) make the most use of our annotation budget in downstream tasks and (2) better benchmark few-shot text generative models. We welcome submissions that present their selection strategies and the effects on the generation quality.
This paper studies how to automatically generate a natural language text that describes the facts in knowledge graph (KG). Considering the few-shot setting, we leverage the excellent capacities of pretrained language models (PLMs) in language underst anding and generation. We make three major technical contributions, namely representation alignment for bridging the semantic gap between KG encodings and PLMs, relation-biased KG linearization for deriving better input representations, and multi-task learning for learning the correspondence between KG and text. Extensive experiments on three benchmark datasets have demonstrated the effectiveness of our model on KG-to-text generation task. In particular, our model outperforms all comparison methods on both fully-supervised and few-shot settings. Our code and datasets are available at https://github.com/RUCAIBox/Few-Shot-KG2Text.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا