ترغب بنشر مسار تعليمي؟ اضغط هنا

Design and Performance of an Interferometric Trigger Array for Radio Detection of High-Energy Neutrinos

118   0   0.0 ( 0 )
 نشر من قبل Eric Oberla
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultra-high energy neutrinos are detectable through impulsive radio signals generated through interactions in dense media, such as ice. Subsurface in-ice radio arrays are a promising way to advance the observation and measurement of astrophysical high-energy neutrinos with energies above those discovered by the IceCube detector ($geq$1 PeV) as well as cosmogenic neutrinos created in the GZK process ($geq$100 PeV). Here we describe the $textit{NuPhase}$ detector, which is a compact receiving array of low-gain antennas deployed 185 m deep in glacial ice near the South Pole. Signals from the antennas are digitized and coherently summed into multiple beams to form a low-threshold interferometric phased array trigger for radio impulses. The NuPhase detector was installed at an Askaryan Radio Array (ARA) station during the 2017/18 Austral summer season. $textit{In situ}$ measurements with an impulsive, point-source calibration instrument show a 50% trigger efficiency on impulses with voltage signal-to-noise ratios (SNR) of $le$2.0, a factor of $sim$1.8 improvement in SNR over the standard ARA combinatoric trigger. Hardware-level simulations, validated with $textit{in situ}$ measurements, predict a trigger threshold of an SNR as low as 1.6 for neutrino interactions that are in the far field of the array. With the already-achieved NuPhase trigger performance included in ARASim, a detector simulation for the ARA experiment, we find the trigger-level effective detector volume is increased by a factor of 1.8 at neutrino energies between 10 and 100 PeV compared to the currently used ARA combinatoric trigger. We also discuss an achievable near term path toward lowering the trigger threshold further to an SNR of 1.0, which would increase the effective single-station volume by more than a factor of 3 in the same range of neutrino energies.



قيم البحث

اقرأ أيضاً

We have found a radio-wave-reflection effect in rock salt for the detection of ultra-high energy neutrinos which are expected to be generated in Greisen, Zatsepin, and Kuzmin (GZK) processes in the universe. When an UHE neutrino interacts with rock s alt or ice as a detection medium, a shower is generated. That shower is formed by hadronic and electromagnetic avalanche processes. The energy of the UHE neutrino shower converts to thermal energy through ionization processes. Consequently, the temperature rises along the shower produced by the UHE neutrino. The refractive index of the medium rises with temperature. The irregularity of the refractive index in the medium leads to a reflection of radio waves. This reflection effect combined with the long attenuation length of radio waves in rock salt and ice would yield a new method to detect UHE neutrinos. We measured the phase of the reflected radio wave under irradiation with an electron beam on ice and rock salt powder. The measured phase showed excellent consistence with the power reflection fraction which was measured directly. A model taking into account the temperature change explained the phase and the amplitude of the reflected wave. Therefore the reflection mechanism was confirmed. The power reflection fraction was compared with that calculated with the Fresnel equations, the ratio between the measured result and that obtained with the Fresnel equations in ice was larger than that of rock salt.
74 - A. Nepomuk Otte 2019
The detection of astrophysical neutrinos by IceCube and the potential to constrain source models of ultra-high energy cosmic rays provide the motivation to develop instruments for the observation of neutrinos above $10^7$ GeV. Among the different tec hniques to detect ultra-high energy neutrinos is the Earth-skimming technique. It makes use of the fact that the tau produced in a tau neutrino interaction inside the Earth can emerge from the ground and initiate an upward-going particle shower in the atmosphere. The particle shower and thus the neutrino can be reconstructed by measuring the Cherenkov and radio emission from the shower particles. In this presentation, we discuss our ongoing development of a Cherenkov telescope for the detection of tau neutrinos, which is to be deployed on the Extreme Universe Space Observatory Super Pressure Balloon 2 (EUSO-SPB2) and is a precursor experiment for the proposed Probe of Extreme Multi-Messenger Astrophysics (POEMMA) mission. POEMMA aims at the detection of ultrahigh energy cosmic rays and ultrahigh energy neutrinos from low earth orbit. The 1 m$^2$ Cherenkov telescope for EUSO-SPB2 will use silicon photomultipliers coupled to a 100 MS/s readout based on the ASIC for General Electronics for TPC`s (AGET) switch capacitor ring sampler. We present the optics, results from our studies to qualify the readout concept and the design of the mechanical integration of the photon detectors and the readout into the telescope.
The Cherenkov Telescope Array (CTA) is a future gamma-ray observatory that is planned to significantly improve upon the sensitivity and precision of the current generation of Cherenkov telescopes. The observatory will consist of several dozens of tel escopes with different sizes and equipped with different types of cameras. Of these, the FlashCam camera system is the first to implement a fully digital signal processing chain which allows for a traceable, configurable trigger scheme and flexible signal reconstruction. As of autumn 2016, a prototype FlashCam camera for the medium-sized telescopes of CTA nears completion. First results of the ongoing system tests demonstrate that the signal chain and the readout system surpass CTA requirements. The stability of the system is shown using long-term temperature cycling.
Current experiments aimed at measuring the polarization of the Cosmic Microwave Background (CMB) use cryogenic detector arrays and cold optical systems to boost the mapping speed of the sky survey. For these reasons, large volume cryogenic systems, w ith large optical windows, working continuously for years, are needed. Here we report on the cryogenic system of the QUBIC (Q and U Bolometric Interferometer for Cosmology) experiment: we describe its design, fabrication, experimental optimization and validation in the Technological Demonstrator configuration. The QUBIC cryogenic system is based on a large volume cryostat, using two pulse-tube refrigerators to cool at ~3K a large (~1 m^3) volume, heavy (~165kg) instrument, including the cryogenic polarization modulator, the corrugated feedhorns array, and the lower temperature stages; a 4He evaporator cooling at ~1K the interferometer beam combiner; a 3He evaporator cooling at ~0.3K the focal-plane detector arrays. The cryogenic system has been tested and validated for more than 6 months of continuous operation. The detector arrays have reached a stable operating temperature of 0.33K, while the polarization modulator has been operated from a ~10K base temperature. The system has been tilted to cover the boresight elevation range 20 deg -90 deg without significant temperature variations. The instrument is now ready for deployment to the high Argentinean Andes.
116 - K. Singh , M. Mevius , O. Scholten 2011
When an ultra-high energy neutrino or cosmic ray strikes the Lunar surface a radio-frequency pulse is emitted. We plan to use the LOFAR radio telescope to detect these pulses. In this work we propose an efficient trigger implementation for LOFAR optimized for the observation of short radio pulses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا