ﻻ يوجد ملخص باللغة العربية
We construct a top-down holographic model of Weyl semimetal states using $(3+1)$-dimensional $mathcal{N}=4$ supersymmetric $SU(N_c)$ Yang-Mills theory, at large $N_c$ and strong coupling, coupled to a number $N_f ll N_c$ of $mathcal{N}=2$ hypermultiplets with mass $m$. A $U(1)$ subgroup of the R-symmetry acts on the hypermultiplet fermions as an axial symmetry. In the presence of a constant external axial gauge field in a spatial direction, $b$, we find the defining characteristic of a Weyl semi-metal: a quantum phase transition as $m/b$ increases, from a topological state with non-zero anomalous Hall conductivity to a trivial insulator. The transition is first order. Remarkably, the anomalous Hall conductivity is independent of the hypermultiplet mass, taking the value dictated by the axial anomaly. At non-zero temperature the transition remains first order, and the anomalous Hall conductivity acquires non-trivial dependence on the hypermultiplet mass and temperature.
We investigate gauge/gravity duals with flavour for which pure-gauge Kalb-Ramond B fields are turned on in the background, into which a D7 brane probe is embedded. First we consider the case of a magnetic field in two of the spatial boundary directio
We parametrize the (2+1)-dimensional AdS space and the BTZ black hole with Fefferman-Graham coordinates starting from the AdS boundary. We consider various boundary metrics: Rindler, static de Sitter and FRW. In each case, we compute the holographic
We present a systematic study of holographic correlators in a vast array of SCFTs with non-maximal superconformal symmetry. These theories include 4d $mathcal{N}=2$ SCFTs from D3-branes near F-theory singularities, 5d Seiberg exceptional theories and
We define a holographic dual to the Donaldson-Witten topological twist of $mathcal{N}=2$ gauge theories on a Riemannian four-manifold. This is described by a class of asymptotically locally hyperbolic solutions to $mathcal{N}=4$ gauged supergravity i
It is a long-standing conjecture that any CFT with a large central charge and a large gap $Delta_{text{gap}}$ in the spectrum of higher-spin single-trace operators must be dual to a local effective field theory in AdS. We prove a sharp form of this c