ﻻ يوجد ملخص باللغة العربية
Feature learning for 3D object detection from point clouds is very challenging due to the irregularity of 3D point cloud data. In this paper, we propose Pointformer, a Transformer backbone designed for 3D point clouds to learn features effectively. Specifically, a Local Transformer module is employed to model interactions among points in a local region, which learns context-dependent region features at an object level. A Global Transformer is designed to learn context-aware representations at the scene level. To further capture the dependencies among multi-scale representations, we propose Local-Global Transformer to integrate local features with global features from higher resolution. In addition, we introduce an efficient coordinate refinement module to shift down-sampled points closer to object centroids, which improves object proposal generation. We use Pointformer as the backbone for state-of-the-art object detection models and demonstrate significant improvements over original models on both indoor and outdoor datasets.
Though 3D object detection from point clouds has achieved rapid progress in recent years, the lack of flexible and high-performance proposal refinement remains a great hurdle for existing state-of-the-art two-stage detectors. Previous works on refini
We present Voxel Transformer (VoTr), a novel and effective voxel-based Transformer backbone for 3D object detection from point clouds. Conventional 3D convolutional backbones in voxel-based 3D detectors cannot efficiently capture large context inform
Accurate detection of obstacles in 3D is an essential task for autonomous driving and intelligent transportation. In this work, we propose a general multimodal fusion framework FusionPainting to fuse the 2D RGB image and 3D point clouds at a semantic
3D object detection is a key perception component in autonomous driving. Most recent approaches are based on Lidar sensors only or fused with cameras. Maps (e.g., High Definition Maps), a basic infrastructure for intelligent vehicles, however, have n
To safely deploy autonomous vehicles, onboard perception systems must work reliably at high accuracy across a diverse set of environments and geographies. One of the most common techniques to improve the efficacy of such systems in new domains involv