ﻻ يوجد ملخص باللغة العربية
Choosing a proper set of kernel functions is an important problem in learning Gaussian Process (GP) models since each kernel structure has different model complexity and data fitness. Recently, automatic kernel composition methods provide not only accurate prediction but also attractive interpretability through search-based methods. However, existing methods suffer from slow kernel composition learning. To tackle large-scaled data, we propose a new sparse approximate posterior for GPs, MultiSVGP, constructed from groups of inducing points associated with individual additive kernels in compositional kernels. We demonstrate that this approximation provides a better fit to learn compositional kernels given empirical observations. We also provide theoretically justification on error bound when compared to the traditional sparse GP. In contrast to the search-based approach, we present a novel probabilistic algorithm to learn a kernel composition by handling the sparsity in the kernel selection with Horseshoe prior. We demonstrate that our model can capture characteristics of time series with significant reductions in computational time and have competitive regression performance on real-world data sets.
The generalization properties of Gaussian processes depend heavily on the choice of kernel, and this choice remains a dark art. We present the Neural Kernel Network (NKN), a flexible family of kernels represented by a neural network. The NKN architec
Refining low-resolution (LR) spatial fields with high-resolution (HR) information is challenging as the diversity of spatial datasets often prevents direct matching of observations. Yet, when LR samples are modeled as aggregate conditional means of H
Variational autoencoders (VAE) are a powerful and widely-used class of models to learn complex data distributions in an unsupervised fashion. One important limitation of VAEs is the prior assumption that latent sample representations are independent
Motivated by objects such as electric fields or fluid streams, we study the problem of learning stochastic fields, i.e. stochastic processes whose samples are fields like those occurring in physics and engineering. Considering general transformations
How can we efficiently gather information to optimize an unknown function, when presented with multiple, mutually dependent information sources with different costs? For example, when optimizing a robotic system, intelligently trading off computer si