One may use amplitude-based resummation in QED $otimes$ QCD to achieve IR-improvement of unintegrable singularities in the infrared regime to arbitrary precision in principle. We illustrate such improvement in specific examples in precision LHC/FCC physics.
IR-improvement based on amplitude-level resummation allows one to control unintegrable results in quantum field theory with arbitrary precision in principle. We illustrate such resummation in specific examples in precision LHC and FCC physics and in quantum gravity.
We present recent developments in the theory and application of IR-improved QED$otimes$QCD resummation methods, realized by MC event generator methods, for LHC and FCC physics scenarios.
In the context of design studies for future $pp$ colliders, we present a set of predictions for average soft-QCD event properties for $pp$ collisions at $E_mathrm{CM} = 14$, $27$, and $100$ TeV. The current default Monash 2013 tune of the PYTHIA 8.2
event generator is used as the baseline for the extrapolations, with uncertainties evaluated via variations of cross-section parametrisations, PDFs, MPI energy-scaling parameters, and colour-reconnection modelling, subject to current LHC constraints. The observables included in the study are total and inelastic cross sections, inelastic average energy and track densities per unit pseudorapidity (inside $|eta|le 6$), average track $p_perp$, and jet cross sections for 50- and 100-GeV anti-$k_T$ jets with $Delta R=0.4$, using aMC@NLO in conjunction with PYTHIA 8 for the latter.
The goal of this report is to give a comprehensive overview of the rich field of forward physics, with a special attention to the topics that can be studied at the LHC. The report starts presenting a selection of the Monte Carlo simulation tools curr
ently available, chapter 2, then enters the rich phenomenology of QCD at low, chapter 3, and high, chapter 4, momentum transfer, while the unique scattering conditions of central exclusive production are analyzed in chapter 5. The last two experimental topics, Cosmic Ray and Heavy Ion physics are presented in the chapter 6 and 7 respectively. Chapter 8 is dedicated to the BFKL dynamics, multiparton interactions, and saturation. The report ends with an overview of the forward detectors at LHC. Each chapter is correlated with a comprehensive bibliography, attempting to provide to the interested reader with a wide opportunity for further studies.
This document provides a writeup of all contributions to the workshop on High precision measurements of $alpha_s$: From LHC to FCC-ee held at CERN, Oct. 12--13, 2015. The workshop explored in depth the latest developments on the determination of the
QCD coupling $alpha_s$ from 15 methods where high precision measurements are (or will be) available. Those include low-energy observables: (i) lattice QCD, (ii) pion decay factor, (iii) quarkonia and (iv) $tau$ decays, (v) soft parton-to-hadron fragmentation functions, as well as high-energy observables: (vi) global fits of parton distribution functions, (vii) hard parton-to-hadron fragmentation functions, (viii) jets in $e^pm$p DIS and $gamma$-p photoproduction, (ix) photon structure function in $gamma$-$gamma$, (x) event shapes and (xi) jet cross sections in $e^+e^-$ collisions, (xii) W boson and (xiii) Z boson decays, and (xiv) jets and (xv) top-quark cross sections in proton-(anti)proton collisions. The current status of the theoretical and experimental uncertainties associated to each extraction method, the improvements expected from LHC data in the coming years, and future perspectives achievable in $e^+e^-$ collisions at the Future Circular Collider (FCC-ee) with $cal{O}$(1--100 ab$^{-1}$) integrated luminosities yielding 10$^{12}$ Z bosons and jets, and 10$^{8}$ W bosons and $tau$ leptons, are thoroughly reviewed. The current uncertainty of the (preliminary) 2015 strong coupling world-average value, $alpha_s(m_Z)$ = 0.1177 $pm$ 0.0013, is about 1%. Some participants believed this may be reduced by a factor of three in the near future by including novel high-precision observables, although this opinion was not universally shared. At the FCC-ee facility, a factor of ten reduction in the $alpha_s$ uncertainty should be possible, mostly thanks to the huge Z and W data samples available.