ﻻ يوجد ملخص باللغة العربية
We investigate response selection for multi-turn conversation in retrieval-based chatbots. Existing studies pay more attention to the matching between utterances and responses by calculating the matching score based on learned features, leading to insufficient model reasoning ability. In this paper, we propose a graph-reasoning network (GRN) to address the problem. GRN first conducts pre-training based on ALBERT using next utterance prediction and utterance order prediction tasks specifically devised for response selection. These two customized pre-training tasks can endow our model with the ability of capturing semantical and chronological dependency between utterances. We then fine-tune the model on an integrated network with sequence reasoning and graph reasoning structures. The sequence reasoning module conducts inference based on the highly summarized context vector of utterance-response pairs from the global perspective. The graph reasoning module conducts the reasoning on the utterance-level graph neural network from the local perspective. Experiments on two conversational reasoning datasets show that our model can dramatically outperform the strong baseline methods and can achieve performance which is close to human-level.
In this paper, we study the task of selecting the optimal response given a user and system utterance history in retrieval-based multi-turn dialog systems. Recently, pre-trained language models (e.g., BERT, RoBERTa, and ELECTRA) showed significant imp
Recently, open domain multi-turn chatbots have attracted much interest from lots of researchers in both academia and industry. The dominant retrieval-based methods use context-response matching mechanisms for multi-turn response selection. Specifical
This paper proposes an utterance-to-utterance interactive matching network (U2U-IMN) for multi-turn response selection in retrieval-based chatbots. Different from previous methods following context-to-response matching or utterance-to-response matchi
Non-task oriented dialogue systems have achieved great success in recent years due to largely accessible conversation data and the development of deep learning techniques. Given a context, current systems are able to yield a relevant and fluent respo
Recently Graph Neural Network (GNN) has been applied successfully to various NLP tasks that require reasoning, such as multi-hop machine reading comprehension. In this paper, we consider a novel case where reasoning is needed over graphs built from s