ﻻ يوجد ملخص باللغة العربية
We introduce a computational origami problem which we call the segment folding problem: given a set of $n$ line-segments in the plane the aim is to make creases along all segments in the minimum number of folding steps. Note that a folding might alter the relative position between the segments, and a segment could split into two. We show that it is NP-hard to determine whether $n$ line segments can be folded in $n$ simple folding operations.
In this paper, we show that deciding rigid foldability of a given crease pattern using all creases is weakly NP-hard by a reduction from Partition, and that deciding rigid foldability with optional creases is strongly NP-hard by a reduction from 1-in
We show that determining the crossing number of a link is NP-hard. For some weaker notions of link equivalence, we also show NP-completeness.
Deciding whether a family of disjoint line segments in the plane can be linked into a simple polygon (or a simple polygonal chain) by adding segments between their endpoints is NP-hard.
In a geometric network G = (S, E), the graph distance between two vertices u, v in S is the length of the shortest path in G connecting u to v. The dilation of G is the maximum factor by which the graph distance of a pair of vertices differs from the
We prove that path puzzles with complete row and column information--or equivalently, 2D orthogonal discrete tomography with Hamiltonicity constraint--are strongly NP-complete, ASP-complete, and #P-complete. Along the way, we newly establish ASP-comp