ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian Optimization of Area-based Road Pricing

59   0   0.0 ( 0 )
 نشر من قبل Renming Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This study presents a Bayesian Optimization framework for area- and distance-based time-of-day pricing (TODP) for urban networks. The road pricing optimization problem can reach high level of complexity depending on the pricing scheme considered, its associated detailed network properties and the affected heterogeneous demand features. We consider heterogeneous travellers with individual-specific trip attributes and departure-time choice parameters together with a Macroscopic Fundamental Diagram (MFD) model for the urban network. Its mathematical formulation is presented and an agent-based simulation framework is constructed as evaluation function for the TODP optimization problem. The latter becomes highly nonlinear and relying on an expensive-to-evaluate objective function. We then present and test a Bayesian Optimization approach to compute different time-of-day pricing schemes by maximizing social welfare. Our proposed method learns the relationship between the prices and welfare within a few iterations and is able to find good solutions even in scenarios with high dimensionality in the decision variables space, setting a path for complexity reduction in more realistic road pricing optimization problems. Furthermore and as expected, the simulation results show that TODP improves the social welfare against the no-pricing case.

قيم البحث

اقرأ أيضاً

Electricity market modelling is often used by governments, industry and agencies to explore the development of scenarios over differing timeframes. For example, how would the reduction in cost of renewable energy impact investments in gas power plant s or what would be an optimum strategy for carbon tax or subsidies? Cost optimization based solutions are the dominant approach for understanding different long-term energy scenarios. However, these types of models have certain limitations such as the need to be interpreted in a normative manner, and the assumption that the electricity market remains in equilibrium throughout. Through this work, we show that agent-based models are a viable technique to simulate decentralised electricity markets. The aim of this paper is to validate an agent-based modelling framework to increase confidence in its ability to be used in policy and decision making. Our framework can model heterogeneous agents with imperfect information. The model uses a rules-based approach to approximate the underlying dynamics of a real world, decentralised electricity market. We use the UK as a case study, however, our framework is generalisable to other countries. We increase the temporal granularity of the model by selecting representative days of electricity demand and weather using a $k$-means clustering approach. We show that our framework can model the transition from coal to gas observed in the UK between 2013 and 2018. We are also able to simulate a future scenario to 2035 which is similar to the UK Government, Department for Business and Industrial Strategy (BEIS) projections. We show a more realistic increase in nuclear power over this time period. This is due to the fact that with current nuclear technology, electricity is generated almost instantaneously and has a low short-run marginal cost cite{Department2016}.
Recent work from the reinforcement learning community has shown that Evolution Strategies are a fast and scalable alternative to other reinforcement learning methods. In this paper we show that Evolution Strategies are a special case of model-based s tochastic search methods. This class of algorithms has nice asymptotic convergence properties and known convergence rates. We show how these methods can be used to solve both cooperative and competitive multi-agent problems in an efficient manner. We demonstrate the effectiveness of this approach on two complex multi-agent UAV swarm combat scenarios: where a team of fixed wing aircraft must attack a well-defended base, and where two teams of agents go head to head to defeat each other.
444 - Yue Meng , Zengyi Qin , Chuchu Fan 2021
Reactive and safe agent modelings are important for nowadays traffic simulator designs and safe planning applications. In this work, we proposed a reactive agent model which can ensure safety without comprising the original purposes, by learning only high-level decisions from expert data and a low-level decentralized controller guided by the jointly learned decentralized barrier certificates. Empirical results show that our learned road user simulation models can achieve a significant improvement in safety comparing to state-of-the-art imitation learning and pure control-based methods, while being similar to human agents by having smaller errors to the expert data. Moreover, our learned reactive agents are shown to generalize better to unseen traffic conditions, and react better to other road users and therefore can help understand challenging planning problems pragmatically.
A case study of the Singapore road network provides empirical evidence that road pricing can significantly affect commuter trip timing behaviors. In this paper, we propose a model of trip timing decisions that reasonably matches the observed commuter s behaviors. Our model explicitly captures the difference in individuals sensitivity to price, travel time and early or late arrival at destination. New pricing schemes are suggested to better spread peak travel and reduce traffic congestion. Simulation results based on the proposed model are provided in comparison with the real data for the Singapore case study.
Effective techniques for eliciting user preferences have taken on added importance as recommender systems (RSs) become increasingly interactive and conversational. A common and conceptually appealing Bayesian criterion for selecting queries is expect ed value of information (EVOI). Unfortunately, it is computationally prohibitive to construct queries with maximum EVOI in RSs with large item spaces. We tackle this issue by introducing a continuous formulation of EVOI as a differentiable network that can be optimized using gradient methods available in modern machine learning (ML) computational frameworks (e.g., TensorFlow, PyTorch). We exploit this to develop a novel, scalable Monte Carlo method for EVOI optimization, which is more scalable for large item spaces than methods requiring explicit enumeration of items. While we emphasize the use of this approach for pairwise (or k-wise) comparisons of items, we also demonstrate how our method can be adapted to queries involving subsets of item attributes or partial items, which are often more cognitively manageable for users. Experiments show that our gradient-based EVOI technique achieves state-of-the-art performance across several domains while scaling to large item spaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا