ترغب بنشر مسار تعليمي؟ اضغط هنا

Absolute Calibration of Diffuse Radio Surveys at 45 and 150 MHz

404   0   0.0 ( 0 )
 نشر من قبل Raul Monsalve Dr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use EDGES measurements to determine scale and zero-level corrections to the diffuse radio surveys by Guzman et al. at $45$ MHz and Landecker & Wielebinski at $150$ MHz. We find that the Guzman et al. map requires a scale correction of $1.076 pm 0.034$ ($2sigma$) and a zero-level correction of $-160 pm 78$ K ($2sigma$) to best-fit the EDGES data. For the Landecker & Wielebinski map, the scale correction is $1.112 pm 0.023$ ($2sigma$) and the zero-level correction is $0.7 pm 6.0$ K ($2sigma$). The correction uncertainties are dominated by systematic effects, of which the most significant are uncertainty in the calibration of the EDGES receivers, antenna pointing, and tropospheric and ionospheric effects. We propagate the correction uncertainties to estimate the uncertainties in the corrected maps themselves and find that the $2sigma$ uncertainty in the map brightness temperature is in the range $3.2-7.5%$ for the Guzman et al. map and $2.1-9.0%$ for the Landecker & Wielebinski map, with the largest percent uncertainties occurring at high Galactic latitudes. The corrected maps could be used to improve existing diffuse low-frequency radio sky models, which are essential tools in analyses of cosmological $21$ cm observations, as well as to investigate the existence of a radio monopole excess above the cosmic microwave background and known Galactic and extragalactic contributions.

قيم البحث

اقرأ أيضاً

Radio relics are patches of diffuse synchrotron radio emission that trace shock waves. Relics are thought to form when intra-cluster medium electrons are accelerated by cluster merger induced shock waves through the diffusive shock acceleration mecha nism. In this paper, we present observations spanning 150 MHz to 30 GHz of the `Sausage and `Toothbrush relics from the Giant Metrewave and Westerbork telescopes, the Karl G. Jansky Very Large Array, the Effelsberg telescope, the Arcminute Microkelvin Imager and Combined Array for Research in Millimeter-wave Astronomy. We detect both relics at 30 GHz, where the previous highest frequency detection was at 16 GHz. The integrated radio spectra of both sources clearly steepen above 2 GHz, at the >6$sigma$ significance level, supports the spectral steepening previously found in the `Sausage and the Abell 2256 relic. Our results challenge the widely adopted simple formation mechanism of radio relics and suggest more complicated models have to be developed that, for example, involve re-acceleration of aged seed electrons.
Since its discovery in 1963, 3C273 has become one of the most widely studied quasars with investigations spanning the electromagnetic spectrum. While much has been discovered about this historically notable source, its low-frequency emission is far l ess well understood. Observations in the MHz regime have traditionally lacked the resolution required to explore small-scale structures that are key to understanding the processes that result in the observed emission. In this paper we use the first sub-arcsecond images of 3C273 at MHz frequencies to investigate the morphology of the compact jet structures and the processes that result in the observed spectrum. Using the full complement of LOFARs international stations, we produce $0.31 times 0.21$ arcsec images of 3C273 at 150 MHz to determine the jets kinetic power, place constraints on the bulk speed and inclination angle of the jets, and look for evidence of the elusive counter-jet at 150 MHz. Using ancillary data at GHz frequencies, we fit free-free absorption (FFA) and synchrotron self-absorption (SSA) models to determine their validity in explaining the observed spectra. The images presented display for the first time that robust, high-fidelity imaging of low-declination complex sources is now possible with the LOFAR international baselines. We show that the main small-scale structures of 3C273 match those seen at higher frequencies and that absorption is present in the observed emission. We determine the kinetic power of the jet to be in the range of $3.5 times 10^{43}$ - $1.5 times 10^{44}$ erg s$^{-1}$ which agrees with estimates made using higher frequency observations. We derive lower limits for the bulk speed and Lorentz factor of $beta gtrsim 0.55$ and $Gamma geq 1.2$ respectively. The counter-jet remains undetected at $150$ MHz, placing a limit on the peak brightness of $S_mathrm{cj_150} < 40$ mJy beam$^{-1}$.
Ultra-steep spectrum (USS) radio sources are good tracers of powerful radio galaxies at $z > 2$. Identification of even a single bright radio galaxy at $z > 6$ can be used to detect redshifted 21cm absorption due to neutral hydrogen in the intervenin g IGM. Here we describe a new sample of high-redshift radio galaxy (HzRG) candidates constructed from the TGSS ADR1 survey at 150 MHz. We employ USS selection ($alpha le -1.3$) in $sim10000$ square degrees, in combination with strict size selection and non-detections in all-sky optical and infrared surveys. We apply flux density cuts that probe a unique parameter space in flux density ($50 < S_{textrm{150}} < 200$ mJy) to build a sample of 32 HzRG candidates. Follow-up Karl G. Jansky Very Large Array (VLA) observations at 1.4 GHz with an average beam size of $1.3$ arcseconds ($$) revealed $sim 48%$ of sources to have a single radio component. P-band (370 MHz) imaging of 17 of these sources revealed a flattening radio SED for ten sources at low frequencies, which is expected from compact HzRGs. Two of our sources lie in fields where deeper multi-wavelength photometry and ancillary radio data are available and for one of these we find a best-fit photo-z of $4.8 pm 2.0$. The other source has $z_{textrm{phot}}=1.4 pm 0.1$ and a small angular size ($3.7$), which could be associated with an obscured star forming galaxy or with a dead elliptical. One USS radio source not part of the HzRG sample but observed with the VLA nonetheless is revealed to be a candidate giant radio galaxy with a host galaxy photo-z of $1.8pm0.5$, indicating a size of 875 kpc.
We present a search for transient radio sources on timescales of 2-9 years at 150 MHz. This search is conducted by comparing the first Alternative Data Release of the TIFR GMRT Sky Survey (TGSS ADR1) and the second data release of the LOFAR Two-metre Sky Survey (LoTSS DR2). The overlapping survey area covers 5570 $rm{deg}^2$ on the sky, or 14% of the entire hemisphere. We introduce a method to compare the source catalogues that involves a pair match of sources, a flux density cutoff to meet the survey completeness limit and a newly developed compactness criterion. This method is used to identify both transient candidates in the TGSS source catalogue that have no counterpart in the LoTSS catalogue and transient candidates in LoTSS without a counterpart in TGSS. We find that imaging artefacts and uncertainties and variations in the flux density scales complicate the transient search. Our method to search for transients by comparing two different surveys, while taking into account imaging artefacts around bright sources and misaligned flux scales between surveys, is universally applicable to future radio transient searches. No transient sources were identified, but we are able to place an upper limit on the transient surface density of $<5.4 cdot 10^{-4} text{deg}^{-2}$ at 150 MHz for compact sources with an integrated flux density over 100 mJy. Here we define a transient as a compact source with flux greater than 100 mJy that appears in the catalogue of one survey without a counterpart in the other survey.
We study for the first time the low-frequency ($sim$150 MHz) radio brightness distribution of Arp~299 at subarcsecond resolution, tracing in both compact and extended emission regions the local spectral energy distribution (SED) in order to character ize the dominant emission and absorption processes. We analysed the spatially resolved emission of Arp 299 revealed by 150 MHz international baseline Low-Frequency Array (LOFAR) and 1.4, 5.0, and 8.4 GHz Very Large Array (VLA) observations. We present the first subarcsecond (0.4$sim$100~pc) image of the whole Arp~299 system at 150~MHz. The high surface brightness sensitivity of our LOFAR observations ($sim$100 $mu$Jy/beam) allowed us to detect all of the nuclear components detected at higher frequencies, as well as the extended steep-spectrum emission surrounding the nuclei. We obtained spatially resolved, two-point spectral index maps for the whole galaxy: the compact nuclei show relatively flat spectra, while the extended, diffuse component shows a steep spectrum. We fitted the radio SED of the nuclear regions using two different models: a continuous free-free medium model and a clumpy model. The continuous model can explain the SED of the nuclei assuming a population of relativistic electrons subjected to synchrotron, bremsstrahlung, and ionization losses. The clumpy model fits assuming relativistic electrons with negligible energy losses, and thermal fractions that are more typical of star-forming galaxies than those required for the continuous model. Our results confirm the usefulness of combining spatially resolved radio imaging at both MHz and GHz frequencies to characterize in detail the radio emission properties of LIRGs from the central 100 pc out to the kiloparsec galaxy-wide scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا