ترغب بنشر مسار تعليمي؟ اضغط هنا

A search for faint high-redshift radio galaxy candidates at 150 MHz

101   0   0.0 ( 0 )
 نشر من قبل Aayush Saxena
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultra-steep spectrum (USS) radio sources are good tracers of powerful radio galaxies at $z > 2$. Identification of even a single bright radio galaxy at $z > 6$ can be used to detect redshifted 21cm absorption due to neutral hydrogen in the intervening IGM. Here we describe a new sample of high-redshift radio galaxy (HzRG) candidates constructed from the TGSS ADR1 survey at 150 MHz. We employ USS selection ($alpha le -1.3$) in $sim10000$ square degrees, in combination with strict size selection and non-detections in all-sky optical and infrared surveys. We apply flux density cuts that probe a unique parameter space in flux density ($50 < S_{textrm{150}} < 200$ mJy) to build a sample of 32 HzRG candidates. Follow-up Karl G. Jansky Very Large Array (VLA) observations at 1.4 GHz with an average beam size of $1.3$ arcseconds ($$) revealed $sim 48%$ of sources to have a single radio component. P-band (370 MHz) imaging of 17 of these sources revealed a flattening radio SED for ten sources at low frequencies, which is expected from compact HzRGs. Two of our sources lie in fields where deeper multi-wavelength photometry and ancillary radio data are available and for one of these we find a best-fit photo-z of $4.8 pm 2.0$. The other source has $z_{textrm{phot}}=1.4 pm 0.1$ and a small angular size ($3.7$), which could be associated with an obscured star forming galaxy or with a dead elliptical. One USS radio source not part of the HzRG sample but observed with the VLA nonetheless is revealed to be a candidate giant radio galaxy with a host galaxy photo-z of $1.8pm0.5$, indicating a size of 875 kpc.

قيم البحث

اقرأ أيضاً

Ultra Steep Spectrum (USS) radio sources are one of the efficient tracers of powerful High-z Radio Galaxies (HzRGs). In contrast to searches for powerful HzRGs from radio surveys of moderate depths, fainter USS samples derived from deeper radio surve ys can be useful in finding HzRGs at even higher redshifts and in unveiling a population of obscured weaker radio-loud AGN at moderate redshifts. Using our 325 MHz GMRT observations (5-sigma ~ 800 microJy) and 1.4 GHz VLA observations (5-sigma ~ 80 - 100 microJy) available in two subfields (viz., VLA-VIMOS VLT Deep Survey (VLA-VVDS) and Subaru X-ray Deep Field (SXDF)) of the XMM-LSS field, we derive a large sample of 160 faint USS radio sources and characterize their nature. The optical, IR counterparts of our USS sample sources are searched using existing deep surveys, at respective wavelengths. We attempt to unveil the nature of our faint USS sources using diagnostic techniques based on mid-IR colors, flux ratios of radio to mid-IR, and radio luminosities. Redshift estimates are available for 86/116 (~ 74%) USS sources in the VLA-VVDS field and for 39/44 (~ 87%) USS sources in the SXDF fields with median values (z_median) ~ 1.18 and ~ 1.57, which are higher than that for non-USS radio sources (z_median non-USS ~ 0.99 and ~ 0.96), in the two subfields, respectively. The flux ratio of radio to mid-IR (S_1.4 GHz/S_3.6 micron) versus redshift diagnostic plot suggests that more than half of our USS sample sources distributed over z ~ 0.5 to 3.8 are likely to be hosted in obscured environments. A significant fraction (~ 26% in the VLA-VVDS and ~ 13% in the SXDF) of our USS sources without redshift estimates mostly remain unidentified in the existing optical, IR surveys, and exhibit high radio to mid-IR flux ratio limits similar to HzRGs, and thus, can be considered as potential HzRG candidates.
We use EDGES measurements to determine scale and zero-level corrections to the diffuse radio surveys by Guzman et al. at $45$ MHz and Landecker & Wielebinski at $150$ MHz. We find that the Guzman et al. map requires a scale correction of $1.076 pm 0. 034$ ($2sigma$) and a zero-level correction of $-160 pm 78$ K ($2sigma$) to best-fit the EDGES data. For the Landecker & Wielebinski map, the scale correction is $1.112 pm 0.023$ ($2sigma$) and the zero-level correction is $0.7 pm 6.0$ K ($2sigma$). The correction uncertainties are dominated by systematic effects, of which the most significant are uncertainty in the calibration of the EDGES receivers, antenna pointing, and tropospheric and ionospheric effects. We propagate the correction uncertainties to estimate the uncertainties in the corrected maps themselves and find that the $2sigma$ uncertainty in the map brightness temperature is in the range $3.2-7.5%$ for the Guzman et al. map and $2.1-9.0%$ for the Landecker & Wielebinski map, with the largest percent uncertainties occurring at high Galactic latitudes. The corrected maps could be used to improve existing diffuse low-frequency radio sky models, which are essential tools in analyses of cosmological $21$ cm observations, as well as to investigate the existence of a radio monopole excess above the cosmic microwave background and known Galactic and extragalactic contributions.
Galaxies that are being stripped of their gas can sometimes be recognized from their optical appearance. Extreme examples of stripped galaxies are the so-called ``jellyfish galaxies, that exhibit tentacles of debris material with a characteristic jel lyfish morphology. We have conducted the first systematic search for galaxies that are being stripped of their gas at low-z (z=0.04-0.07) in different environments, selecting galaxies with varying degrees of morphological evidence for stripping. We have visually inspected B and V-band images and identified 344 candidates in 71 galaxy clusters of the OMEGAWINGS+WINGS sample and 75 candidates in groups and lower mass structures in the PM2GC sample. We present the atlas of stripping candidates and a first analysis of their environment and their basic properties, such as morphologies, star formation rates and galaxy stellar masses. Candidates are found in all clusters and at all clustercentric radii, and their number does not correlate with the cluster velocity dispersion sigma or X-ray luminosity L_X. Interestingly, convincing cases of candidates are also found in groups and lower mass haloes (10^{11}-10^{14} M_{sun}), although the physical mechanism at work needs to be securely identified. All the candidates are disky, have stellar masses ranging from log M/M_{sun} < 9 to > 11.5 and the majority of them form stars at a rate that is on average a factor of 2 higher (2.5 sigma) compared to non-stripped galaxies of similar mass. The few post-starburst and passive candidates have weak stripping evidence. We conclude that the stripping phenomenon is ubiquitous in clusters and could be present even in groups and low mass haloes. Further studies will reveal the physics of the gas stripping and clarify the mechanisms at work.
We present a search for transient radio sources on timescales of 2-9 years at 150 MHz. This search is conducted by comparing the first Alternative Data Release of the TIFR GMRT Sky Survey (TGSS ADR1) and the second data release of the LOFAR Two-metre Sky Survey (LoTSS DR2). The overlapping survey area covers 5570 $rm{deg}^2$ on the sky, or 14% of the entire hemisphere. We introduce a method to compare the source catalogues that involves a pair match of sources, a flux density cutoff to meet the survey completeness limit and a newly developed compactness criterion. This method is used to identify both transient candidates in the TGSS source catalogue that have no counterpart in the LoTSS catalogue and transient candidates in LoTSS without a counterpart in TGSS. We find that imaging artefacts and uncertainties and variations in the flux density scales complicate the transient search. Our method to search for transients by comparing two different surveys, while taking into account imaging artefacts around bright sources and misaligned flux scales between surveys, is universally applicable to future radio transient searches. No transient sources were identified, but we are able to place an upper limit on the transient surface density of $<5.4 cdot 10^{-4} text{deg}^{-2}$ at 150 MHz for compact sources with an integrated flux density over 100 mJy. Here we define a transient as a compact source with flux greater than 100 mJy that appears in the catalogue of one survey without a counterpart in the other survey.
Population III galaxies are predicted to exist at high redshifts and may be rendered sufficiently bright for detection with current telescopes when gravitationally lensed by a foreground galaxy cluster. Population III galaxies that exhibit strong Lya emission should furthermore be identifiable from broadband photometry because of their unusual colors. Here, we report on a search for such objects at z > 6 in the imaging data from the Cluster Lensing And Supernova survey with Hubble (CLASH), covering 25 galaxy clusters in 16 filters. Our selection algorithm returns five singly-imaged candidates with Lya-like color signatures, for which ground-based spectroscopy with current 8-10 m class telescopes should be able to test the predicted strength of the Lya line. None of these five objects have been included in previous CLASH compilations of high-redshift galaxy candidates. However, when large grids of spectral synthesis models are applied to the study of these objects, we find that only two of these candidates are significantly better fitted by Population III models than by more mundane, low-metallicity stellar populations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا