ترغب بنشر مسار تعليمي؟ اضغط هنا

Power Fluctuations of An Irreversible Quantum Otto Engine

107   0   0.0 ( 0 )
 نشر من قبل Jianhui Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive the general probability distribution function of stochastic work for quantum Otto engines in which both the isochoric and driving processes are irreversible due to finite time duration. The time-dependent power fluctuations, average power, and thermodynamic efficiency are explicitly obtained for a complete cycle operating with an analytically solvable two-level system. We show that, there is a trade-off between efficiency (or power) and power fluctuations.



قيم البحث

اقرأ أيضاً

In this paper, we analyze the total work extracted and the efficiency of the magnetic Otto cycle in its classic and quant
The second law of thermodynamics constrains that the efficiency of heat engines, classical or quantum, cannot be greater than the universal Carnot efficiency. We discover another bound for the efficiency of a quantum Otto heat engine consisting of a harmonic oscillator. Dynamics of the engine is governed by the Lindblad equation for the density matrix, which is mapped to the Fokker-Planck equation for the quasi-probability distribution. Applying stochastic thermodynamics to the Fokker-Planck equation system, we obtain the $hbar$-dependent quantum mechanical bound for the efficiency. It turns out that the bound is tighter than the Carnot efficiency. The engine achieves the bound in the low temperature limit where quantum effects dominate. Our work demonstrates that quantum nature could suppress the performance of heat engines in terms of efficiency bound, work and power output.
We derive the probability distribution of the efficiency of a quantum Otto engine. We explicitly compute the quantum efficiency statistics for an analytically solvable two-level engine. We analyze the occurrence of values of the stochastic efficiency above unity, in particular at infinity, in the nonadiabatic regime and further determine mean and variance in the case of adiabatic driving. We finally investigate the classical-to-quantum transition as the temperature is lowered.
132 - Tobias Denzler , Eric Lutz 2020
Stability is an important property of small thermal machines with fluctuating power output. We here consider a finite-time quantum Carnot engine based on a degenerate multilevel system and study the influence of its finite Hilbert space structure on its stability. We optimize in particular its relative work fluctuations with respect to level degeneracy and level number. We find that its optimal performance may surpass those of nondegenerate two-level engines or harmonic oscillator motors. Our results show how to realize high-performance, high-stability cyclic quantum heat engines.
We analyse non-equilibrium Carnot-like cycles built with a colloidal particle in a harmonic trap, which is immersed in a fluid that acts as a heat bath. Our analysis is carried out in the overdamped regime. The cycle comprises four branches: two isot hermal processes and two textit{locally} adiabatic ones. In the latter, both the temperature of the bath and the stiffness of the harmonic trap vary in time, but in such a way that the average heat vanishes for all times. All branches are swept at a finite rate and, therefore, the corresponding processes are irreversible, not quasi-static. Specifically, we are interested in optimising the heat engine to deliver the maximum power and characterising the corresponding values of the physical parameters. The efficiency at maximum power is shown to be very close to the Curzon-Ahlborn bound over the whole range of the ratio of temperatures of the two thermal baths, pointing to the near optimality of the proposed protocol.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا