ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast lattice dynamics and electron-phonon coupling in platinum extracted with a global fitting approach for time-resolved polycrystalline diffraction data

388   0   0.0 ( 0 )
 نشر من قبل Daniela Zahn
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantitative knowledge of electron-phonon coupling is important for many applications as well as for the fundamental understanding of nonequilibrium relaxation processes. Time-resolved diffraction provides direct access to this knowledge through its sensitivity to laser-induced lattice dynamics. Here, we present an approach for analyzing time-resolved polycrystalline diffraction data. A two-step routine is used to minimize the number of time-dependent fit parameters. The lattice dynamics are extracted reliably by finding the best fit to the full transient diffraction pattern rather than by analyzing transient changes of individual Debye-Scherrer rings. We apply this approach to platinum, an important component of novel photocatalytic and spintronic applications, for which a large variation of literature values exists for the electron-phonon coupling parameter $G_mathrm{ep}$. Based on the extracted evolution of the atomic mean squared displacement (MSD) and using a two-temperature model (TTM), we obtain $G_mathrm{ep}=(3.9pm0.2)cdot10^{17}frac{mathrm{W}}{mathrm{m}^3hspace{1pt}mathrm{K}}$. We find that at least up to an absorbed energy density of $124hspace{2pt}frac{mathrm{J}}{mathrm{cm}^3}$, $G_mathrm{ep}$ is not fluence-dependent. Our results for the lattice dynamics of platinum provide insights into electron-phonon coupling and phonon thermalization and constitute a basis for quantitative descriptions of platinum-based heterostructures in nonequilibrium conditions.

قيم البحث

اقرأ أيضاً

In the past decade, the advent of time-resolved spectroscopic tools has provided a new ground to explore fundamental interactions in solids and to disentangle degrees of freedom whose coupling leads to broad structures in the frequency domain. Time- and angle-resolved photoemission spectroscopy (tr-ARPES) has been utilized to directly study the relaxation dynamics of a metal in the presence of electron-phonon coupling. The effect of photo-excitations on the real and imaginary part of the self-energy as well as the time scale associated with different recombination processes are discussed. In contrast to a theoretical model, the phonon energy does not set a clear scale governing quasiparticle dynamics, which is also different from the results observed in a superconducting material. These results point to the need for a more complete theoretical framework to understand electron-phonon interaction in a photo-excited state.
Time and angular resolved photoelectron spectroscopy is a powerful technique to measure electron dynamics in solids. Recent advances in this technique have facilitated band and energy resolved observations of the effect that excited phonons, have on the electronic structure. Here, we show with the help of textit{ab initio} simulations that the Fourier analysis of time-resolved measurements of solids with excited phonon modes leads, in fact, to an observation of the band- and mode-resolved electron-phonon coupling directly from the experimental data and without need for theoretical computations.
84 - D. Novko , F. Caruso , C. Draxl 2019
The zone-center $E_{2g}$ modes play a crucial role in MgB$_2$, controlling the scattering mechanisms in the normal state as well the superconducting pairing. Here, we demonstrate via first-principles quantum-field theory calculations that, due to the anisotropic electron-phonon interaction, a $hot$-$phonon$ regime where the $E_{2g}$ phonons can achieve significantly larger effective populations than other modes, is triggered in MgB$_2$ by the interaction with an ultra-short laser pulse. Spectral signatures of this scenario in ultrafast pump-probe Raman spectroscopy are discussed in detail, revealing also a fundamental role of nonadiabatic processes in the optical features of the $E_{2g}$ mode.
We present a comprehensive ab initio study of structural, electronic, lattice dynamical and electron-phonon coupling properties of the Bi(111) surface within density functional perturbation theory. Relativistic corrections due to spin-orbit coupling are consistently taken into account. As calculations are carried out in a periodic slab geometry, special attention is given to the convergence with respect to the slab thickness. Although the electronic structure of Bi(111) thin films varies significantly with thickness, we found that the lattice dynamics of Bi(111) is quite robust and appears converged already for slabs as thin as 6 bilayers. Changes of interatomic couplings are confined mostly to the first two bilayers, resulting in super-bulk modes with frequencies higher than the optic bulk spectrum, and in an enhanced density of states at lower frequencies for atoms in the first bilayer. Electronic states of the surface band related to the outer part of the hole Fermi surfaces exhibit a moderate electron-phonon coupling of about 0.45, which is larger than the coupling constant of bulk Bi. States at the inner part of the hole surface as well as those forming the electron pocket close to the zone center show much increased couplings due to transitions into bulk projected states near Gamma_bar. For these cases, the state dependent Eliashberg functions exhibit pronounced peaks at low energy and strongly deviate in shape from a Debye-like spectrum, indicating that an extraction of the coupling strength from measured electronic self-energies based on this simple model is likely to fail.
Topological materials provide an exclusive platform to study the dynamics of relativistic particles in table-top experiments and offer the possibility of wide-scale technological applications. ZrSiS is a newly discovered topological nodal-line semime tal and has drawn enormous interests. In this report, we have investigated the lattice dynamics and electron-phonon interaction in single crystalline ZrSiS using Raman spectroscopy. Polarization and angle resolved measurements have been performed and the results have been analyzed using crystal symmetries and theoretically calculated atomic vibrational patterns along with phonon dispersion spectra. Wavelength and temperature dependent measurements show the complex interplay of electron and phonon degrees of freedom, resulting in resonant phonon and quasielastic electron scatterings through inter-band transitions. Our high-pressure Raman studies reveal vibrational anomalies, which were further investigated from the high-pressure synchrotron x-ray diffraction (HPXRD) spectra. From HPXRD, we have clearly identified pressure-induced structural transitions and coexistence of multiple phases, which also indicate possible electronic topological transitions in ZrSiS. The present study not only provides the fundamental information on the phonon subsystem, but also sheds some light in understanding the topological nodal-line phase in ZrSiS and other iso-structural systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا