ترغب بنشر مسار تعليمي؟ اضغط هنا

Sources of $H_0$-tensions in dark energy scenarios

94   0   0.0 ( 0 )
 نشر من قبل Balakrishna Sandeep Haridasu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By focusing on the simple $w eq-1$ extension to $Lambda$CDM, we assess which epoch(s) possibly source the $H_0$-tension. We consider Cosmic Microwave Background (CMB) data in three possible ways: $i)$ complete CMB data; $ii)$ excluding the $l<30$ temperature and polarization likelihoods; $iii)$ imposing early universe priors, that disentangle early and late time physics. Through a joint analysis with low-redshift supernovae type-Ia and gravitationally lensed time delay datasets, {and neglecting galaxy clustering Baryonic Acoustic Oscillation (BAO) data}, we find that the inclusion of early universe CMB priors is consistent with the local estimate of $H_0$ while excluding the low-$l$+lowE likelihoods mildly relaxes the tension. This is in contrast to joint analyses with the complete CMB data. Our simple implementation of contrasting the effect of different CMB priors on the $H_0$ estimate shows that the early universe information from the CMB data when decoupled from late-times physics could be in agreement with a higher value of $H_0$. {We also find no evidence for the early dark energy model using only the early universe physics within the CMB data. Finally using the BAO data in different redshift ranges to perform inverse distance ladder analysis, we find that the early universe modifications, while being perfectly capable of alleviating the $H_0$-tension when including the BAO galaxy clustering data, would be at odds with the Ly-$alpha$ BAO data due to the difference in $r_{rm d}, vs., H_0$ correlation between the two BAO datasets.} We therefore infer and speculate that source for the $H_0$-tension between CMB and local estimates could possibly originate in the modeling of late-time physics within the CMB analysis. This in turn recasts the $H_0$-tension as an effect of late-time physics in CMB, instead of the current early-time CMB vs. local late-time physics perspective.

قيم البحث

اقرأ أيضاً

107 - Gen Ye , Jun Zhang , Yun-Song Piao 2021
It is currently thought that the early dark energy (EDE) resolution of the Hubble tension will inevitably suffer inconsistency with the large scale structure data (quantified as $S_8$). However, if this so-called $S_8$ tension is physical, it might b e related only with the clustering property of dark matter at the corresponding scale. We find by performing Monte Carlo Markov Chain analysis that in the AdS-EDE model (with an Anti-de Sitter phase around recombination), if an axion field with mass $m_asimeq1.3times10^{-26}$ eV becomes dynamical at redshift $zsimeq 1.7times10^4$ and constitutes $7%$ of the total dark matter, both $H_0$ and $S_8$ will be consistent with local measurements within $1sigma$, while the model can fit PlanckCMB+SN+BAO+EFT dataset as well as $Lambda$CDM, which will possibly be tested with on-going CMB and galaxy surveys.
We investigate the possibility of phantom crossing in the dark energy sector and solution for the Hubble tension between early and late universe observations. We use robust combinations of different cosmological observations, namely the CMB, local me asurement of Hubble constant ($H_0$), BAO and SnIa for this purpose. For a combination of CMB+BAO data which is related to early Universe physics, phantom crossing in the dark energy sector is confirmed at $95$% confidence level and we obtain the constraint $H_0=71.0^{+2.9}_{-3.8}$ km/s/Mpc at 68% confidence level which is in perfect agreement with the local measurement by Riess et al. We show that constraints from different combination of data are consistent with each other and all of them are consistent with phantom crossing in the dark energy sector. For the combination of all data considered, we obtain the constraint $H_0=70.25pm 0.78$ km/s/Mpc at 68% confidence level and the phantom crossing happening at the scale factor $a_m=0.851^{+0.048}_{-0.031}$ at 68% confidence level.
The Phenomenologically Emergent Dark Energy model, a dark energy model with the same number of free parameters as the flat $Lambda$CDM, has been proposed as a working example of a minimal model which can avoid the current cosmological tensions. A str aightforward question is whether or not the inclusion of massive neutrinos and extra relativistic species may spoil such an appealing phenomenological alternative. We present the bounds on $M_{ u}$ and $N_{rm eff}$ and comment on the long standing $H_0$ and $sigma_8$ tensions within this cosmological framework with a wealth of cosmological observations. Interestingly, we find, at $95%$ confidence level, and with the most complete set of cosmological observations, $M_{ u}sim 0.21^{+0.15}_{-0.14}$ eV and $N_{rm eff}= 3.03pm 0.32$ i.e. an indication for a non-zero neutrino mass with a significance above $2sigma$. The well known Hubble constant tension is considerably easened, with a significance always below the $2sigma$ level.
The mismatch between the locally measured expansion rate of the universe and the one inferred from observations of the cosmic microwave background (CMB) assuming the canonical $Lambda$CDM model has become the new cornerstone of modern cosmology, and many new-physics set ups are rising to the challenge. Concomitant with the so-called $H_0$ problem, there is evidence of a growing tension between the CMB-preferred value and the local determination of the weighted amplitude of matter fluctuations $S_8$. It would be appealing and compelling if both the $H_0$ and $S_8$ tensions were resolved at once, but as yet none of the proposed new-physics models have done so to a satisfactory degree. Herein, we adopt a systematic approach to investigate the possible interconnection among the free parameters in several classes of models that typify the main theoretical frameworks tackling the tensions on the universe expansion rate and the clustering of matter. Our calculations are carried out using the publicly available Boltzmann solver CAMB in combination with the sampler CosmoMC. We show that even after combining the leading classes of models sampling modifications of both the early and late time universe a simultaneous solution to the $H_0$ and $S_8$ tensions remains elusive.
The cosmological term, $Lambda$, was introduced $104$ years ago by Einstein in his gravitational field equations. Whether $Lambda$ is a rigid quantity or a dynamical variable in cosmology has been a matter of debate for many years, especially after t he introduction of the general notion of dark energy (DE). $Lambda$ is associated to the vacuum energy density, $rho_{rm vac}$, and one may expect that it evolves slowly with the cosmological expansion. Herein we present a devoted study testing this possibility using the promising class of running vacuum models (RVMs). We use a large string $SNIa+BAO+H(z)+LSS+CMB$ of modern cosmological data, in which for the first time the CMB part involves the full Planck 2018 likelihood for these models. We test the dependence of the results on the threshold redshift $z_*$ at which the vacuum dynamics is activated in the recent past and find positive signals up to $sim4.0sigma$ for $z_*simeq 1$. The RVMs prove very competitive against the standard $Lambda$CDM model and give a handle for solving the $sigma_8$ tension and alleviating the $H_0$ one.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا