ترغب بنشر مسار تعليمي؟ اضغط هنا

Flow-based Generative Models for Learning Manifold to Manifold Mappings

118   0   0.0 ( 0 )
 نشر من قبل Xingjian Zhen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Many measurements or observations in computer vision and machine learning manifest as non-Euclidean data. While recent proposals (like spherical CNN) have extended a number of deep neural network architectures to manifold-valued data, and this has often provided strong improvements in performance, the literature on generative models for manifold data is quite sparse. Partly due to this gap, there are also no modality transfer/translation models for manifold-valued data whereas numerous such methods based on generative models are available for natural images. This paper addresses this gap, motivated by a need in brain imaging -- in doing so, we expand the operating range of certain generative models (as well as generative models for modality transfer) from natural images to images with manifold-valued measurements. Our main result is the design of a two-stream version of GLOW (flow-based invertible generative models) that can synthesize information of a field of one type of manifold-valued measurements given another. On the theoretical side, we introduce three kinds of invertible layers for manifold-valued data, which are not only analogous to their functionality in flow-based generative models (e.g., GLOW) but also preserve the key benefits (determinants of the Jacobian are easy to calculate). For experiments, on a large dataset from the Human Connectome Project (HCP), we show promising results where we can reliably and accurately reconstruct brain images of a field of orientation distribution functions (ODF) from diffusion tensor images (DTI), where the latter has a $5times$ faster acquisition time but at the expense of worse angular resolution.

قيم البحث

اقرأ أيضاً

114 - Tong Zhang 2017
Symmetric positive definite (SPD) matrices (e.g., covariances, graph Laplacians, etc.) are widely used to model the relationship of spatial or temporal domain. Nevertheless, SPD matrices are theoretically embedded on Riemannian manifolds. In this pap er, we propose an end-to-end deep manifold-to-manifold transforming network (DMT-Net) which can make SPD matrices flow from one Riemannian manifold to another more discriminative one. To learn discriminative SPD features characterizing both spatial and temporal dependencies, we specifically develop three novel layers on manifolds: (i) the local SPD convolutional layer, (ii) the non-linear SPD activation layer, and (iii) the Riemannian-preserved recursive layer. The SPD property is preserved through all layers without any requirement of singular value decomposition (SVD), which is often used in the existing methods with expensive computation cost. Furthermore, a diagonalizing SPD layer is designed to efficiently calculate the final metric for the classification task. To evaluate our proposed method, we conduct extensive experiments on the task of action recognition, where input signals are popularly modeled as SPD matrices. The experimental results demonstrate that our DMT-Net is much more competitive over state-of-the-art.
Machine-learning (ML) algorithms or models, especially deep neural networks (DNNs), have shown significant promise in several areas. However, researchers have recently demonstrated that ML algorithms, especially DNNs, are vulnerable to adversarial ex amples (slightly perturbed samples that cause misclassification). The existence of adversarial examples has hindered the deployment of ML algorithms in safety-critical sectors, such as security. Several defenses for adversarial examples exist in the literature. One of the important classes of defenses are manifold-based defenses, where a sample is ``pulled back into the data manifold before classifying. These defenses rely on the assumption that data lie in a manifold of a lower dimension than the input space. These defenses use a generative model to approximate the input distribution. In this paper, we investigate the following question: do the generative models used in manifold-based defenses need to be topology-aware? We suggest the answer is yes, and we provide theoretical and empirical evidence to support our claim.
Few-shot learning algorithms aim to learn model parameters capable of adapting to unseen classes with the help of only a few labeled examples. A recent regularization technique - Manifold Mixup focuses on learning a general-purpose representation, ro bust to small changes in the data distribution. Since the goal of few-shot learning is closely linked to robust representation learning, we study Manifold Mixup in this problem setting. Self-supervised learning is another technique that learns semantically meaningful features, using only the inherent structure of the data. This work investigates the role of learning relevant feature manifold for few-shot tasks using self-supervision and regularization techniques. We observe that regularizing the feature manifold, enriched via self-supervised techniques, with Manifold Mixup significantly improves few-shot learning performance. We show that our proposed method S2M2 beats the current state-of-the-art accuracy on standard few-shot learning datasets like CIFAR-FS, CUB, mini-ImageNet and tiered-ImageNet by 3-8 %. Through extensive experimentation, we show that the features learned using our approach generalize to complex few-shot evaluation tasks, cross-domain scenarios and are robust against slight changes to data distribution.
Recently proposed adversarial training methods show the robustness to both adversarial and original examples and achieve state-of-the-art results in supervised and semi-supervised learning. All the existing adversarial training methods consider only how the worst perturbed examples (i.e., adversarial examples) could affect the model output. Despite their success, we argue that such setting may be in lack of generalization, since the output space (or label space) is apparently less informative.In this paper, we propose a novel method, called Manifold Adversarial Training (MAT). MAT manages to build an adversarial framework based on how the worst perturbation could affect the distributional manifold rather than the output space. Particularly, a latent data space with the Gaussian Mixture Model (GMM) will be first derived.On one hand, MAT tries to perturb the input samples in the way that would rough the distributional manifold the worst. On the other hand, the deep learning model is trained trying to promote in the latent space the manifold smoothness, measured by the variation of Gaussian mixtures (given the local perturbation around the data point). Importantly, since the latent space is more informative than the output space, the proposed MAT can learn better a robust and compact data representation, leading to further performance improvement. The proposed MAT is important in that it can be considered as a superset of one recently-proposed discriminative feature learning approach called center loss. We conducted a series of experiments in both supervised and semi-supervised learning on three benchmark data sets, showing that the proposed MAT can achieve remarkable performance, much better than those of the state-of-the-art adversarial approaches. We also present a series of visualization which could generate further understanding or explanation on adversarial examples.
Widespread outreach programs using remote retinal imaging have proven to decrease the risk from diabetic retinopathy, the leading cause of blindness in the US. However, this process still requires manual verification of image quality and grading of i mages for level of disease by a trained human grader and will continue to be limited by the lack of such scarce resources. Computer-aided diagnosis of retinal images have recently gained increasing attention in the machine learning community. In this paper, we introduce a set of neural networks for diabetic retinopathy classification of fundus retinal images. We evaluate the efficiency of the proposed classifiers in combination with preprocessing and augmentation steps on a sample dataset. Our experimental results show that neural networks in combination with preprocessing on the images can boost the classification accuracy on this dataset. Moreover the proposed models are scalable and can be used in large scale datasets for diabetic retinopathy detection. The models introduced in this paper can be used to facilitate the diagnosis and speed up the detection process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا