ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Fusion Clustering Network

62   0   0.0 ( 0 )
 نشر من قبل Wenxuan Tu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep clustering is a fundamental yet challenging task for data analysis. Recently we witness a strong tendency of combining autoencoder and graph neural networks to exploit structure information for clustering performance enhancement. However, we observe that existing literature 1) lacks a dynamic fusion mechanism to selectively integrate and refine the information of graph structure and node attributes for consensus representation learning; 2) fails to extract information from both sides for robust target distribution (i.e., groundtruth soft labels) generation. To tackle the above issues, we propose a Deep Fusion Clustering Network (DFCN). Specifically, in our network, an interdependency learning-based Structure and Attribute Information Fusion (SAIF) module is proposed to explicitly merge the representations learned by an autoencoder and a graph autoencoder for consensus representation learning. Also, a reliable target distribution generation measure and a triplet self-supervision strategy, which facilitate cross-modality information exploitation, are designed for network training. Extensive experiments on six benchmark datasets have demonstrated that the proposed DFCN consistently outperforms the state-of-the-art deep clustering methods.

قيم البحث

اقرأ أيضاً

96 - Deyu Bo , Xiao Wang , Chuan Shi 2020
Clustering is a fundamental task in data analysis. Recently, deep clustering, which derives inspiration primarily from deep learning approaches, achieves state-of-the-art performance and has attracted considerable attention. Current deep clustering m ethods usually boost the clustering results by means of the powerful representation ability of deep learning, e.g., autoencoder, suggesting that learning an effective representation for clustering is a crucial requirement. The strength of deep clustering methods is to extract the useful representations from the data itself, rather than the structure of data, which receives scarce attention in representation learning. Motivated by the great success of Graph Convolutional Network (GCN) in encoding the graph structure, we propose a Structural Deep Clustering Network (SDCN) to integrate the structural information into deep clustering. Specifically, we design a delivery operator to transfer the representations learned by autoencoder to the corresponding GCN layer, and a dual self-supervised mechanism to unify these two different deep neural architectures and guide the update of the whole model. In this way, the multiple structures of data, from low-order to high-order, are naturally combined with the multiple representations learned by autoencoder. Furthermore, we theoretically analyze the delivery operator, i.e., with the delivery operator, GCN improves the autoencoder-specific representation as a high-order graph regularization constraint and autoencoder helps alleviate the over-smoothing problem in GCN. Through comprehensive experiments, we demonstrate that our propose model can consistently perform better over the state-of-the-art techniques.
In this paper, we propose an unsupervised collaborative representation deep network (UCRDNet) which consists of novel collaborative representation RBM (crRBM) and collaborative representation GRBM (crGRBM). The UCRDNet is a novel deep collaborative f eature extractor for exploring more sophisticated probabilistic models of real-valued and binary data. Unlike traditional representation methods, one similarity relation between the input instances and another similarity relation between the features of the input instances are collaboratively fused together in the representation process of the crGRBM and crRBM models. Here, we use the Locality Sensitive Hashing (LSH) method to divide the input instance matrix into many mini blocks which contain similar instance and local features. Then, we expect the hidden layer feature units of each block gather to block center as much as possible in the training processes of the crRBM and crGRBM. Hence, the correlations between the instances and features as collaborative relations are fused in the hidden layer features. In the experiments, we use K-means and Spectral Clustering (SC) algorithms based on four contrast deep networks to verify the deep collaborative representation capability of the UCRDNet architecture. One architecture of the UCRDNet is composed with a crGRBM and two crRBMs for modeling real-valued data and another architecture of it is composed with three crRBMs for modeling binary data. The experimental results show that the proposed UCRDNet has more outstanding performance than the Autoencoder and DeepFS deep networks (without collaborative representation strategy) for unsupervised clustering on the MSRA-MM2.0 and UCI datasets. Furthermore, the proposed UCRDNet shows more excellent collaborative representation capabilities than the CDL deep collaborative networks for unsupervised clustering.
Background: During the early stages of hospital admission, clinicians must use limited information to make diagnostic and treatment decisions as patient acuity evolves. However, it is common that the time series vital sign information from patients t o be both sparse and irregularly collected, which poses a significant challenge for machine / deep learning techniques to analyze and facilitate the clinicians to improve the human health outcome. To deal with this problem, We propose a novel deep interpolation network to extract latent representations from sparse and irregularly sampled time-series vital signs measured within six hours of hospital admission. Methods: We created a single-center longitudinal dataset of electronic health record data for all (n=75,762) adult patient admissions to a tertiary care center lasting six hours or longer, using 55% of the dataset for training, 23% for validation, and 22% for testing. All raw time series within six hours of hospital admission were extracted for six vital signs (systolic blood pressure, diastolic blood pressure, heart rate, temperature, blood oxygen saturation, and respiratory rate). A deep interpolation network is proposed to learn from such irregular and sparse multivariate time series data to extract the fixed low-dimensional latent patterns. We use k-means clustering algorithm to clusters the patient admissions resulting into 7 clusters. Findings: Training, validation, and testing cohorts had similar age (55-57 years), sex (55% female), and admission vital signs. Seven distinct clusters were identified. M Interpretation: In a heterogeneous cohort of hospitalized patients, a deep interpolation network extracted representations from vital sign data measured within six hours of hospital admission. This approach may have important implications for clinical decision-support under time constraints and uncertainty.
119 - Yiwen Sun , Yulu Wang , Kun Fu 2020
Considering deep sequence learning for practical application, two representative RNNs - LSTM and GRU may come to mind first. Nevertheless, is there no chance for other RNNs? Will there be a better RNN in the future? In this work, we propose a novel, succinct and promising RNN - Fusion Recurrent Neural Network (Fusion RNN). Fusion RNN is composed of Fusion module and Transport module every time step. Fusion module realizes the multi-round fusion of the input and hidden state vector. Transport module which mainly refers to simple recurrent network calculate the hidden state and prepare to pass it to the next time step. Furthermore, in order to evaluate Fusion RNNs sequence feature extraction capability, we choose a representative data mining task for sequence data, estimated time of arrival (ETA) and present a novel model based on Fusion RNN. We contrast our method and other variants of RNN for ETA under massive vehicle travel data from DiDi Chuxing. The results demonstrate that for ETA, Fusion RNN is comparable to state-of-the-art LSTM and GRU which are more complicated than Fusion RNN.
The goal of lifetime clustering is to develop an inductive model that maps subjects into $K$ clusters according to their underlying (unobserved) lifetime distribution. We introduce a neural-network based lifetime clustering model that can find cluste r assignments by directly maximizing the divergence between the empirical lifetime distributions of the clusters. Accordingly, we define a novel clustering loss function over the lifetime distributions (of entire clusters) based on a tight upper bound of the two-sample Kuiper test p-value. The resultant model is robust to the modeling issues associated with the unobservability of termination signals, and does not assume proportional hazards. Our results in real and synthetic datasets show significantly better lifetime clusters (as evaluated by C-index, Brier Score, Logrank score and adjusted Rand index) as compared to competing approaches.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا