ترغب بنشر مسار تعليمي؟ اضغط هنا

The voice of COVID-19: Acoustic correlates of infection

94   0   0.0 ( 0 )
 نشر من قبل Bj\\\"orn Schuller
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

COVID-19 is a global health crisis that has been affecting many aspects of our daily lives throughout the past year. The symptomatology of COVID-19 is heterogeneous with a severity continuum. A considerable proportion of symptoms are related to pathological changes in the vocal system, leading to the assumption that COVID-19 may also affect voice production. For the very first time, the present study aims to investigate voice acoustic correlates of an infection with COVID-19 on the basis of a comprehensive acoustic parameter set. We compare 88 acoustic features extracted from recordings of the vowels /i:/, /e:/, /o:/, /u:/, and /a:/ produced by 11 symptomatic COVID-19 positive and 11 COVID-19 negative German-speaking participants. We employ the Mann-Whitney U test and calculate effect sizes to identify features with the most prominent group differences. The mean voiced segment length and the number of voiced segments per second yield the most important differences across all vowels indicating discontinuities in the pulmonic airstream during phonation in COVID-19 positive participants. Group differences in the front vowels /i:/ and /e:/ are additionally reflected in the variation of the fundamental frequency and the harmonics-to-noise ratio, group differences in back vowels /o:/ and /u:/ in statistics of the Mel-frequency cepstral coefficients and the spectral slope. Findings of this study can be considered an important proof-of-concept contribution for a potential future voice-based identification of individuals infected with COVID-19.



قيم البحث

اقرأ أيضاً

In this paper, we propose a new approach to pathological speech synthesis. Instead of using healthy speech as a source, we customise an existing pathological speech sample to a new speakers voice characteristics. This approach alleviates the evaluati on problem one normally has when converting typical speech to pathological speech, as in our approach, the voice conversion (VC) model does not need to be optimised for speech degradation but only for the speaker change. This change in the optimisation ensures that any degradation found in naturalness is due to the conversion process and not due to the model exaggerating characteristics of a speech pathology. To show a proof of concept of this method, we convert dysarthric speech using the UASpeech database and an autoencoder-based VC technique. Subjective evaluation results show reasonable naturalness for high intelligibility dysarthric speakers, though lower intelligibility seems to introduce a marginal degradation in naturalness scores for mid and low intelligibility speakers compared to ground truth. Conversion of speaker characteristics for low and high intelligibility speakers is successful, but not for mid. Whether the differences in the results for the different intelligibility levels is due to the intelligibility levels or due to the speakers needs to be further investigated.
Testing capacity for COVID-19 remains a challenge globally due to the lack of adequate supplies, trained personnel, and sample-processing equipment. These problems are even more acute in rural and underdeveloped regions. We demonstrate that solicited -cough sounds collected over a phone, when analysed by our AI model, have statistically significant signal indicative of COVID-19 status (AUC 0.72, t-test,p <0.01,95% CI 0.61-0.83). This holds true for asymptomatic patients as well. Towards this, we collect the largest known(to date) dataset of microbiologically confirmed COVID-19 cough sounds from 3,621 individuals. When used in a triaging step within an overall testing protocol, by enabling risk-stratification of individuals before confirmatory tests, our tool can increase the testing capacity of a healthcare system by 43% at disease prevalence of 5%, without additional supplies, trained personnel, or physical infrastructure
This paper proposes a novel voice conversion (VC) method based on non-autoregressive sequence-to-sequence (NAR-S2S) models. Inspired by the great success of NAR-S2S models such as FastSpeech in text-to-speech (TTS), we extend the FastSpeech2 model fo r the VC problem. We introduce the convolution-augmented Transformer (Conformer) instead of the Transformer, making it possible to capture both local and global context information from the input sequence. Furthermore, we extend variance predictors to variance converters to explicitly convert the source speakers prosody components such as pitch and energy into the target speaker. The experimental evaluation with the Japanese speaker dataset, which consists of male and female speakers of 1,000 utterances, demonstrates that the proposed model enables us to perform more stable, faster, and better conversion than autoregressive S2S (AR-S2S) models such as Tacotron2 and Transformer.
In voice conversion (VC), an approach showing promising results in the latest voice conversion challenge (VCC) 2020 is to first use an automatic speech recognition (ASR) model to transcribe the source speech into the underlying linguistic contents; t hese are then used as input by a text-to-speech (TTS) system to generate the converted speech. Such a paradigm, referred to as ASR+TTS, overlooks the modeling of prosody, which plays an important role in speech naturalness and conversion similarity. Although some researchers have considered transferring prosodic clues from the source speech, there arises a speaker mismatch during training and conversion. To address this issue, in this work, we propose to directly predict prosody from the linguistic representation in a target-speaker-dependent manner, referred to as target text prediction (TTP). We evaluate both methods on the VCC2020 benchmark and consider different linguistic representations. The results demonstrate the effectiveness of TTP in both objective and subjective evaluations.
COVID-19 infections have well described systemic manifestations, especially respiratory problems. There are currently no specific treatments or vaccines against the current strain. With higher case numbers, a range of neurological symptoms are becomi ng apparent. The mechanisms responsible for these are not well defined, other than those related to hypoxia and microthrombi. We speculate that sustained systemic immune activation seen with SARS-CoV-2 may also cause secondary autoimmune activation in the CNS. Patients with chronic neurological diseases may be at higher risk because of chronic secondary respiratory disease and potentially poor nutritional status. Here, we review the impact of COVID-19 on people with chronic neurological diseases and potential mechanisms. We believe special attention to protecting people with neurodegenerative disease is warranted. We are concerned about a possible delayed pandemic in the form of an increased burden of neurodegenerative disease after acceleration of pathology by systemic COVID-19 infections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا