ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic equivalent of electric superradiance: radiative damping in yttrium-iron-garnet films

144   0   0.0 ( 0 )
 نشر من قبل D\\'avid Szaller
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A dense system of independent oscillators, connected only by their interaction with the same cavity excitation mode, will radiate coherently, which effect is termed superradiance. In several cases, especially if the density of oscillators is high, the superradiance may dominate the intrinsic relaxation processes. This limit can be achieved, e.g., with cyclotron resonance in two-dimensional electron gases. In those experiments, the cyclotron resonance is coupled to the electric field of light, while the oscillator density can be easily controlled by varying the gate voltage. However, in the case of magnetic oscillators, to achieve the dominance of superradiance is more tricky, as material parameters limit the oscillator density, and the magnetic coupling to the light wave is rather small. Here we present quasi-optical magnetic resonance experiments on thin films of yttrium iron garnet. Due to the simplicity of experimental geometry, the intrinsic damping and the superradiance can be easily separated in the transmission spectra. We show that with increasing film thickness, the losses due to coherent radiation prevail the systems internal broadening.



قيم البحث

اقرأ أيضاً

We investigate the temperature dependent microwave absorption spectrum of an yttrium iron garnet sphere as a function of temperature (5 K to 300 K) and frequency (3 GHz to 43.5 GHz). At temperatures above 100 K, the magnetic resonance linewidth incre ases linearly with temperature and shows a Gilbert-like linear frequency dependence. At lower temperatures, the temperature dependence of the resonance linewidth at constant external magnetic fields exhibits a characteristic peak which coincides with a non-Gilbert-like frequency dependence. The complete temperature and frequency evolution of the linewidth can be modeled by the phenomenology of slowly relaxing rare-earth impurities and either the Kasuya-LeCraw mechanism or the scattering with optical magnons. Furthermore, we extract the temperature dependence of the saturation magnetization, the magnetic anisotropy and the g-factor.
The magnetostatic mode (MSM) spectrum of a 300$mu$m diameter single crystalline sphere of yttrium iron garnet is investigated using broadband ferromagnetic resonance (FMR). The individual MSMs are identified via their characteristic dispersion relati ons and the corresponding mode number tuples $(nmr)$ are assigned. Taking FMR data over a broad frequency and magnetic field range allows to analyze both the Gilbert damping parameter~$alpha$ and the inhomogeneous line broadening contribution to the total linewidth of the MSMs separately. The linewidth analysis shows that all MSMs share the same Gilbert damping parameter $alpha=2.7(5) times 10^{-5}$ irrespective of their mode index. In contrast, the inhomogeneous line broadening shows a pronounced mode dependence. This observation is modeled in terms of two-magnon scattering processes of the MSMs into the spin-wave manifold, mediated by surface and volume defects.
A wide variety of new phenomena such as novel magnetization configurations have been predicted to occur in three dimensional magnetic nanostructures. However, the fabrication of such structures is often challenging due to the specific shapes required , such as magnetic tubes and spirals. Furthermore, the materials currently used to assemble these structures are predominantly magnetic metals that do not allow to study the magnetic response of the system separately from the electronic one. In the field of spintronics, the prototypical material used for such experiments is the ferrimagnetic insulator yttrium iron garnet (Y$_3$Fe$_5$O$_{12}$, YIG). YIG is one of the best materials especially for magnonic studies due to its low Gilbert damping. Here, we report the first successful fabrication of YIG thin films via atomic layer deposition. To that end we utilize a supercycle approach based on the combination of sub-nanometer thin layers of the binary systems Fe$_2$O$_3$ and Y$_2$O$_3$ in the correct atomic ratio on Y$_3$Al$_5$O$_{12}$ substrates with a subsequent annealing step. Our process is robust against typical growth-related deviations, ensuring a good reproducibility. The ALD-YIG thin films exhibit a good crystalline quality as well as magnetic properties comparable to other deposition techniques. One of the outstanding characteristics of atomic layer deposition is its ability to conformally coat arbitrarily-shaped substrates. ALD hence is the ideal deposition technique to grant an extensive freedom in choosing the shape of the magnetic system. The atomic layer deposition of YIG enables the fabrication of novel three dimensional magnetic nanostructures, which in turn can be utilized for experimentally investigating the phenomena predicted in those structures.
110 - X. J. Zhou , G. Y. Shi , J. H. Han 2017
Spin information carried by magnons is attractive for computing technology and the development of magnon-based computing circuits is of great interest. However, magnon transport in insulators has been challenging, different from the clear physical pi cture for spin transport in conductors. Here we investigate the lateral transport properties of thermally excited magnons in yttrium iron garnet (YIG), a model magnetic insulator. Polarity reversals of detected spins in non-local geometry devices have been experimentally observed and are strongly dependent on temperature, YIG film thickness, and injector-detector separation distance. A competing two-channel transport model for thermally excited magnons is proposed, which is qualitatively consistent with the spin signal behavior. In addition to the fundamental significance for thermal magnon transport, our work furthers the development of magnonics by creating an easily accessible magnon source with controllable transport
The room temperature magnetoelectric effect was observed in epitaxial iron garnet films that appeared as magnetic domain wall motion induced by electric field. The films grown on gadolinium-gallium garnet substrates with various crystallographic orie ntations were examined. The effect was observed in (210) and (110) films and was not observed in (111) films. Dynamic observation of the domain wall motion in 400 V voltage pulses gave the value of domain wall velocity in the range 30-50 m/s. The same velocity was achieved in magnetic field pulse about 50 Oe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا