ﻻ يوجد ملخص باللغة العربية
We investigate the temperature dependent microwave absorption spectrum of an yttrium iron garnet sphere as a function of temperature (5 K to 300 K) and frequency (3 GHz to 43.5 GHz). At temperatures above 100 K, the magnetic resonance linewidth increases linearly with temperature and shows a Gilbert-like linear frequency dependence. At lower temperatures, the temperature dependence of the resonance linewidth at constant external magnetic fields exhibits a characteristic peak which coincides with a non-Gilbert-like frequency dependence. The complete temperature and frequency evolution of the linewidth can be modeled by the phenomenology of slowly relaxing rare-earth impurities and either the Kasuya-LeCraw mechanism or the scattering with optical magnons. Furthermore, we extract the temperature dependence of the saturation magnetization, the magnetic anisotropy and the g-factor.
A dense system of independent oscillators, connected only by their interaction with the same cavity excitation mode, will radiate coherently, which effect is termed superradiance. In several cases, especially if the density of oscillators is high, th
The magnetostatic mode (MSM) spectrum of a 300$mu$m diameter single crystalline sphere of yttrium iron garnet is investigated using broadband ferromagnetic resonance (FMR). The individual MSMs are identified via their characteristic dispersion relati
Yttrium iron garnet is a complex ferrimagnetic insulator with 20 magnon modes which is used extensively in fundamental experimental studies of magnetisation dynamics. As a transition metal oxide with moderate gap (2.8 eV), yttrium iron garnet require
The nuclear and magnetic structure and full magnon dispersions of yttrium iron garnet Y$_3$Fe$_5$O$_{12}$ have been studied by neutron scattering. The refined nuclear structure is distorted to a trigonal space group of $Rbar{3}$. The highest-energy d
We report on the structure, magnetization, magnetic anisotropy, and domain morphology of ultrathin yttrium iron garnet (YIG)/Pt films with thickness ranging from 3 to 90 nm. We find that the saturation magnetization is close to the bulk value in the