ترغب بنشر مسار تعليمي؟ اضغط هنا

Temperature dependent magnetic damping of yttrium iron garnet spheres

92   0   0.0 ( 0 )
 نشر من قبل Hannes Maier-Flaig
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the temperature dependent microwave absorption spectrum of an yttrium iron garnet sphere as a function of temperature (5 K to 300 K) and frequency (3 GHz to 43.5 GHz). At temperatures above 100 K, the magnetic resonance linewidth increases linearly with temperature and shows a Gilbert-like linear frequency dependence. At lower temperatures, the temperature dependence of the resonance linewidth at constant external magnetic fields exhibits a characteristic peak which coincides with a non-Gilbert-like frequency dependence. The complete temperature and frequency evolution of the linewidth can be modeled by the phenomenology of slowly relaxing rare-earth impurities and either the Kasuya-LeCraw mechanism or the scattering with optical magnons. Furthermore, we extract the temperature dependence of the saturation magnetization, the magnetic anisotropy and the g-factor.



قيم البحث

اقرأ أيضاً

A dense system of independent oscillators, connected only by their interaction with the same cavity excitation mode, will radiate coherently, which effect is termed superradiance. In several cases, especially if the density of oscillators is high, th e superradiance may dominate the intrinsic relaxation processes. This limit can be achieved, e.g., with cyclotron resonance in two-dimensional electron gases. In those experiments, the cyclotron resonance is coupled to the electric field of light, while the oscillator density can be easily controlled by varying the gate voltage. However, in the case of magnetic oscillators, to achieve the dominance of superradiance is more tricky, as material parameters limit the oscillator density, and the magnetic coupling to the light wave is rather small. Here we present quasi-optical magnetic resonance experiments on thin films of yttrium iron garnet. Due to the simplicity of experimental geometry, the intrinsic damping and the superradiance can be easily separated in the transmission spectra. We show that with increasing film thickness, the losses due to coherent radiation prevail the systems internal broadening.
The magnetostatic mode (MSM) spectrum of a 300$mu$m diameter single crystalline sphere of yttrium iron garnet is investigated using broadband ferromagnetic resonance (FMR). The individual MSMs are identified via their characteristic dispersion relati ons and the corresponding mode number tuples $(nmr)$ are assigned. Taking FMR data over a broad frequency and magnetic field range allows to analyze both the Gilbert damping parameter~$alpha$ and the inhomogeneous line broadening contribution to the total linewidth of the MSMs separately. The linewidth analysis shows that all MSMs share the same Gilbert damping parameter $alpha=2.7(5) times 10^{-5}$ irrespective of their mode index. In contrast, the inhomogeneous line broadening shows a pronounced mode dependence. This observation is modeled in terms of two-magnon scattering processes of the MSMs into the spin-wave manifold, mediated by surface and volume defects.
Yttrium iron garnet is a complex ferrimagnetic insulator with 20 magnon modes which is used extensively in fundamental experimental studies of magnetisation dynamics. As a transition metal oxide with moderate gap (2.8 eV), yttrium iron garnet require s a careful treatment of electronic correlation. We have applied quasiparticle self-consistent GW to provide a fully ab initio description of the electronic structure and resulting magnetic properties, including the parameterisation of a Heisenberg model for magnetic exchange interactions. Subsequent spin dynamical modelling with quantum statistics extends our description to the magnon spectrum and thermodynamic properties such as the Curie temperature, finding favourable agreement with experimental measurements. This work provides a snapshot of the state-of-the art in modelling of complex magnetic insulators.
The nuclear and magnetic structure and full magnon dispersions of yttrium iron garnet Y$_3$Fe$_5$O$_{12}$ have been studied by neutron scattering. The refined nuclear structure is distorted to a trigonal space group of $Rbar{3}$. The highest-energy d ispersion extends up to 86 meV. The observed dispersions are reproduced by a simple model with three nearest-neighbor-exchange integrals between 16$a$ (octahedral) and 24$d$ (tetrahedral) sites, $J_{aa}$, $J_{ad}$, and $J_{dd}$, which are estimated to be 0.00$pm$0.05, $-$2.90$pm$0.07, and $-$0.35$pm$0.08 meV, respectively. The lowest-energy dispersion below 14 meV exhibits a quadratic dispersion as expected from ferromagnetic magnons. The imaginary part of $q$-integrated dynamical spin susceptibility $chi$($E$) exhibits a square-root energy-dependence in the low energies. The magnon density of state is estimated from the $chi$($E$) obtained on an absolute scale. The value is consistent with a single polarization mode for the magnon branch expected theoretically.
323 - Johannes Mendil 2019
We report on the structure, magnetization, magnetic anisotropy, and domain morphology of ultrathin yttrium iron garnet (YIG)/Pt films with thickness ranging from 3 to 90 nm. We find that the saturation magnetization is close to the bulk value in the thickest films and decreases towards low thickness with a strong reduction below 10 nm. We characterize the magnetic anisotropy by measuring the transverse spin Hall magnetoresistance as a function of applied field. Our results reveal strong easy plane anisotropy fields of the order of 50-100 mT, which add to the demagnetizing field, as well as weaker in-plane uniaxial anisotropy ranging from 10 to 100 $mu$T. The in-plane easy axis direction changes with thickness, but presents also significant fluctuations among samples with the same thickness grown on the same substrate. X-ray photoelectron emission microscopy reveals the formation of zigzag magnetic domains in YIG films thicker than 10 nm, which have dimensions larger than several 100 $mu$m and are separated by achiral N{e}el-type domain walls. Smaller domains characterized by interspersed elongated features are found in YIG films thinner than 10 nm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا