ترغب بنشر مسار تعليمي؟ اضغط هنا

Speech Enhancement with Zero-Shot Model Selection

135   0   0.0 ( 0 )
 نشر من قبل Ryandhimas Zezario
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent research on speech enhancement (SE) has seen the emergence of deep-learning-based methods. It is still a challenging task to determine the effective ways to increase the generalizability of SE under diverse test conditions. In this study, we combine zero-shot learning and ensemble learning to propose a zero-shot model selection (ZMOS) approach to increase the generalization of SE performance. The proposed approach is realized in the offline and online phases. The offline phase clusters the entire set of training data into multiple subsets and trains a specialized SE model (termed component SE model) with each subset. The online phase selects the most suitable component SE model to perform the enhancement. Furthermore, two selection strategies were developed: selection based on the quality score (QS) and selection based on the quality embedding (QE). Both QS and QE were obtained using a Quality-Net, a non-intrusive quality assessment network. Experimental results confirmed that the proposed ZMOS approach can achieve better performance in both seen and unseen noise types compared to the baseline systems and other model selection systems, which indicates the effectiveness of the proposed approach in providing robust SE performance.

قيم البحث

اقرأ أيضاً

Diffusion probabilistic models have demonstrated an outstanding capability to model natural images and raw audio waveforms through a paired diffusion and reverse processes. The unique property of the reverse process (namely, eliminating non-target si gnals from the Gaussian noise and noisy signals) could be utilized to restore clean signals. Based on this property, we propose a diffusion probabilistic model-based speech enhancement (DiffuSE) model that aims to recover clean speech signals from noisy signals. The fundamental architecture of the proposed DiffuSE model is similar to that of DiffWave--a high-quality audio waveform generation model that has a relatively low computational cost and footprint. To attain better enhancement performance, we designed an advanced reverse process, termed the supportive reverse process, which adds noisy speech in each time-step to the predicted speech. The experimental results show that DiffuSE yields performance that is comparable to related audio generative models on the standardized Voice Bank corpus SE task. Moreover, relative to the generally suggested full sampling schedule, the proposed supportive reverse process especially improved the fast sampling, taking few steps to yield better enhancement results over the conventional full step inference process.
We address the problem of speech enhancement generalisation to unseen environments by performing two manipulations. First, we embed an additional recording from the environment alone, and use this embedding to alter activations in the main enhancemen t subnetwork. Second, we scale the number of noise environments present at training time to 16,784 different environments. Experiment results show that both manipulations reduce word error rates of a pretrained speech recognition system and improve enhancement quality according to a number of performance measures. Specifically, our best model reduces the word error rate from 34.04% on noisy speech to 15.46% on the enhanced speech. Enhanced audio samples can be found in https://speechenhancement.page.link/samples.
The Transformer architecture has demonstrated a superior ability compared to recurrent neural networks in many different natural language processing applications. Therefore, our study applies a modified Transformer in a speech enhancement task. Speci fically, positional encoding in the Transformer may not be necessary for speech enhancement, and hence, it is replaced by convolutional layers. To further improve the perceptual evaluation of the speech quality (PESQ) scores of enhanced speech, the L_1 pre-trained Transformer is fine-tuned using a MetricGAN framework. The proposed MetricGAN can be treated as a general post-processing module to further boost the objective scores of interest. The experiments were conducted using the data sets provided by the organizer of the Deep Noise Suppression (DNS) challenge. Experimental results demonstrated that the proposed system outperformed the challenge baseline, in both subjective and objective evaluations, with a large margin.
This study proposes a trainable adaptive window switching (AWS) method and apply it to a deep-neural-network (DNN) for speech enhancement in the modified discrete cosine transform domain. Time-frequency (T-F) mask processing in the short-time Fourier transform (STFT)-domain is a typical speech enhancement method. To recover the target signal precisely, DNN-based short-time frequency transforms have recently been investigated and used instead of the STFT. However, since such a fixed-resolution short-time frequency transform method has a T-F resolution problem based on the uncertainty principle, not only the short-time frequency transform but also the length of the windowing function should be optimized. To overcome this problem, we incorporate AWS into the speech enhancement procedure, and the windowing function of each time-frame is manipulated using a DNN depending on the input signal. We confirmed that the proposed method achieved a higher signal-to-distortion ratio than conventional speech enhancement methods in fixed-resolution frequency domains.
In noisy conditions, knowing speech contents facilitates listeners to more effectively suppress background noise components and to retrieve pure speech signals. Previous studies have also confirmed the benefits of incorporating phonetic information i n a speech enhancement (SE) system to achieve better denoising performance. To obtain the phonetic information, we usually prepare a phoneme-based acoustic model, which is trained using speech waveforms and phoneme labels. Despite performing well in normal noisy conditions, when operating in very noisy conditions, however, the recognized phonemes may be erroneous and thus misguide the SE process. To overcome the limitation, this study proposes to incorporate the broad phonetic class (BPC) information into the SE process. We have investigated three criteria to build the BPC, including two knowledge-based criteria: place and manner of articulatory and one data-driven criterion. Moreover, the recognition accuracies of BPCs are much higher than that of phonemes, thus providing more accurate phonetic information to guide the SE process under very noisy conditions. Experimental results demonstrate that the proposed SE with the BPC information framework can achieve notable performance improvements over the baseline system and an SE system using monophonic information in terms of both speech quality intelligibility on the TIMIT dataset.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا