ﻻ يوجد ملخص باللغة العربية
Using a subsample of the Bulge Asymmetries and Dynamical Evolution (BAaDE) survey of stellar SiO masers, we explore the prevalence and characteristics of $^{28}$SiO $J=1-0, v=0$ emission. We identify 90 detections of maser, thermal, or composite $^{28}$SiO $J=1-0, v=0$ emission out of approximately 13,000 candidate spectra from the NSFs Karl G. Jansky Very Large Array (VLA). We find that the detected sources are likely asymptotic giant branch (AGB) stars belonging to a bright, foreground Milky Way stellar disk population. For the 32 sources showing thermal components, we extract values for outflow velocity by fitting thermal line profiles. We find a range of circumstellar envelope expansion velocities, and compare to previously recorded OH and CO expansion velocities. This preliminary survey is already the largest study of stellar ground-vibrational-state SiO masers to date, and will be expanded to include the entire VLA BAaDE dataset when data reduction for the 18,988 target sources is completed.
We report here on the production of an ultracold gas of tightly bound Rb2 molecules in the ro-vibrational triplet ground state, close to quantum degeneracy. This is achieved by optically transferring weakly bound Rb2 molecules to the absolute lowest
The intensities of the three widely observed radio-wavelength hyperfine structure (HFS) lines between the {Lambda}-doublet components of the rotational ground state of CH are inconsistent with LTE and indicate ubiquitous population inversion. While t
We present an 86 GHz SiO (v = 1, J = 2 ---> 1) maser search toward late-type stars located within |b|<0.5 deg and 20 deg < l < 50 deg. This search is an extension at longer longitudes of a previously published work. We selected 135 stars from the MSX
As part of an on-going study of radio transients in Epoch 1 (2017-2019) of the Very Large Array Sky Survey (VLASS), we have discovered a sample of 0.2<z<3.2 active galactic nuclei (AGN) selected in the optical/infrared that have recently brightened d
Recent interferometric observations have shown bright HCN emission from the nu2=1 vibrational state arising in buried nuclear regions of galaxies, indicating an efficient pumping of the nu2=1 state through absorption of 14 $mu$m continuum photons. We