ترغب بنشر مسار تعليمي؟ اضغط هنا

Globular cluster numbers in dark matter haloes in a dual formation scenario: an empirical model within EMERGE

105   0   0.0 ( 0 )
 نشر من قبل Lucas Valenzuela
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an empirical model for the number of globular clusters (GCs) in galaxies based on recent data showing a tight relationship between dark matter halo virial masses and GC numbers. While a simple base model forming GCs in low-mass haloes reproduces this relation, we show that a second formation pathway for GCs is needed to account for observed younger GC populations. We confirm previous works that reported the observed linear correlation as being a consequence of hierarchical merging and its insensitivity to the exact GC formation processes at higher virial masses, even for a dual formation scenario. We find that the scatter of the linear relation is strongly correlated with the relative amount of smooth accretion: the more dark matter is smoothly accreted, the fewer GCs a halo has compared to other haloes of the same mass. This scatter is smaller than that introduced by halo mass measurements, indicating that the number of GCs in a galaxy is a good tracer for its dark matter mass. Smooth accretion is also the reason for a lower average dark matter mass per GC in low-mass haloes. Finally, we successfully reproduce the observed general trend of GCs being old and the tendency of more massive haloes hosting older GC systems. Including the second GC formation mechanism through gas-rich mergers leads to a more realistic variety of GC age distributions and also introduces an age inversion in the halo virial mass range $log M_mathrm{vir}/mathrm{M}_odot = 11{-}13$.

قيم البحث

اقرأ أيضاً

We present EMERGE, an Empirical ModEl for the foRmation of GalaxiEs, describing the evolution of individual galaxies in large volumes from $zsim10$ to the present day. We assign a star formation rate to each dark matter halo based on its growth rate, which specifies how much baryonic material becomes available, and the instantaneous baryon conversion efficiency, which determines how efficiently this material is converted to stars, thereby capturing the baryonic physics. Satellites are quenched following the delayed-then-rapid model, and they are tidally disrupted once their subhalo has lost a significant fraction of its mass. The model is constrained with observed data extending out to high redshift. The empirical relations are very flexible, and the model complexity is increased only if required by the data, assessed by several model selection statistics. We find that for the same final halo mass galaxies can have very different star formation histories. Nevertheless, the average star formation and accretion rates are in good agreement with models following an abundance matching strategy. Galaxies that are quenched at $z=0$ typically have a higher peak star formation rate compared to their star-forming counterparts. The accretion of stars can dominate the total mass of massive galaxies, but is insignificant for low-mass systems, independent of star-formation activity. EMERGE predicts stellar-to-halo mass ratios for individual galaxies and introduces scatter self-consistently. We find that at fixed halo mass, passive galaxies have a higher stellar mass on average. The intra-cluster-mass in massive haloes can be up to 8 times larger than the mass of the central galaxy. Clustering for star-forming and quenched galaxies is in good agreement with observational constraints, indicating a realistic assignment of galaxies to haloes.
81 - Qiuhan He , Ran Li , Sungsoon Lim 2017
Small distortions in the images of Einstein rings or giant arcs offer the exciting prospect of detecting dark matter haloes or subhaloes of mass below $10^9$M$_{odot}$, most of which are too small to have made a visible galaxy. A very large number of such haloes are predicted to exist in the cold dark matter model of cosmogony; in contrast other models, such as warm dark matter, predict no haloes below a mass of this order which depends on the properties of the warm dark matter particle. Attempting to detect these small perturbers could therefore discriminate between different kinds of dark matter particles, and even rule out the cold dark matter model altogether. Globular clusters in the lens galaxy also induce distortions in the image which could, in principle, contaminate the test. Here, we investigate the population of globular clusters in six early type galaxies in the Virgo cluster. We find that the number density of globular clusters of mass $sim10^6$M$_{odot}$ is comparable to that of the dark matter perturbers (including subhaloes in the lens and haloes along the line-of-sight). We show that the very different degrees of mass concentration in globular clusters and dark matter haloes result in different lensing distortions. These are detectable with milli-arcsecond resolution imaging which can distinguish between globular cluster and dark matter halo signals.
323 - Kuan Wang 2020
The concentration parameter is a key characteristic of a dark matter halo that conveniently connects the halos present-day structure with its assembly history. Using Dark Sky, a suite of cosmological $N$-body simulations, we investigate how halo conc entration evolves with time and emerges from the mass assembly history. We also explore the origin of the scatter in the relation between concentration and assembly history. We show that the evolution of halo concentration has two primary modes: (1) smooth increase due to pseudo-evolution; and (2) intense responses to physical merger events. Merger events induce lasting and substantial changes in halo structures, and we observe a universal response in the concentration parameter. We argue that merger events are a major contributor to the uncertainty in halo concentration at fixed halo mass and formation time. In fact, even haloes that are typically classified as having quiescent formation histories experience multiple minor mergers. These minor mergers drive small deviations from pseudo-evolution, which cause fluctuations in the concentration parameters and result in effectively irreducible scatter in the relation between concentration and assembly history. Hence, caution should be taken when using present-day halo concentration parameter as a proxy for the halo assembly history, especially if the recent merger history is unknown.
69 - Paulina Assmann 2011
Recent observations of the dwarf elliptical galaxy Scl-dE1 (Sc22) in the Sculptor group of galaxies revealed an extended globular cluster (Scl-dE1 GC1), which exhibits an extremely large core radius of about 21.2 pc. The authors of the discovery pape r speculated on whether this object could reside in its own dark matter halo and/or if it might have formed through the merging of two or more star clusters. In this paper, we present N-body simulations to explore thoroughly this particular formation scenario. We follow the merger of two star clusters within dark matter haloes of a range of masses (as well as in the absence of a dark matter halo). In order to obtain a remnant which resembles the observed extended star cluster, we find that the star formation efficiency has to be quite high (around 33 per cent) and the dark matter halo, if present at all, has to be of very low mass, i.e. raising the mass to light ratio of the object within the body of the stellar distribution by at most a factor of a few. We also find that expansion of a single star cluster following mass loss provides another viable formation path. Finally, we show that future measurements of the velocity dispersion of this system may be able to distinguish between the various scenarios we have explored.
I present a simple phenomenological model for the observed linear scaling of the stellar mass in old globular clusters (GCs) with $z=0$ halo mass in which the stellar mass in GCs scales linearly with progenitor halo mass at $z=6$ above a minimum halo mass for GC formation. This model reproduces the observed $M_{rm GCs}-M_{rm halo}$ relation at $z=0$ and results in a prediction for the minimum halo mass at $z=6$ required for hosting one GC: $M_{rm min}(z=6)=1.07 times 10^9,M_{odot}$. Translated to $z=0$, the mean threshold mass is $M_{rm halo}(z=0) approx 2times 10^{10},M_{odot}$. I explore the observability of GCs in the reionization era and their contribution to cosmic reionization, both of which depend sensitively on the (unknown) ratio of GC birth mass to present-day stellar mass, $xi$. Based on current detections of $z gtrsim 6$ objects with $M_{1500} < -17$, values of $xi > 10$ are strongly disfavored; this, in turn, has potentially important implications for GC formation scenarios. Even for low values of $xi$, some observed high-$z$ galaxies may actually be GCs, complicating estimates of reionization-era galaxy ultraviolet luminosity functions and constraints on dark matter models. GCs are likely important reionization sources if $5 lesssim xi lesssim 10$. I also explore predictions for the fraction of accreted versus in situ GCs in the local Universe and for descendants of systems at the halo mass threshold of GC formation (dwarf galaxies). An appealing feature of the model presented here is the ability to make predictions for GC properties based solely on dark matter halo merger trees.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا