ﻻ يوجد ملخص باللغة العربية
This paper is dealing with two $L^2$ hypocoercivity methods based on Fourier decomposition and mode-by-mode estimates, with applications to rates of convergence or decay in kinetic equations on the torus and on the whole Euclidean space. The main idea is to perturb the standard $L^2$ norm by a twist obtained either by a nonlocal perturbation build upon diffusive macroscopic dynamics, or by a change of the scalar product based on Lyapunov matrix inequalities. We explore various estimates for equations involving a Fokker-Planck and a linear relaxation operator. We review existing results in simple cases and focus on the accuracy of the estimates of the rates. The two methods are compared in the case of the Goldstein-Taylor model in one-dimension.
This paper is devoted to kinetic equations without confinement. We investigate the large time behaviour induced by collision operators with fat tailed local equilibria. Such operators have an anomalous diffusion limit. In the appropriate scaling, the
In this paper, hypocoercivity methods are applied to linear kinetic equations with mass conservation and without confinement, in order to prove that the solutions have an algebraic decay rate in the long-time range, which the same as the rate of the
We propose an approach to obtaining explicit estimates on the resolvent of hypocoercive operators by using Schur complements, rather than from an exponential decay of the evolution semigroup combined with a time integral. We present applications to L
Hypocoercivity methods are applied to linear kinetic equations without any space confinement, when local equilibria have a sub-exponential decay. By Nash type estimates, global rates of decay are obtained, which reflect the behavior of the heat equat
We introduce a new model of the logarithmic type of wave like plate equation with a nonlocal logarithmic damping mechanism. We consider the Cauchy problem for this new model in the whole space, and study the asymptotic profile and optimal decay rates