ﻻ يوجد ملخص باللغة العربية
This paper is devoted to kinetic equations without confinement. We investigate the large time behaviour induced by collision operators with fat tailed local equilibria. Such operators have an anomalous diffusion limit. In the appropriate scaling, the macroscopic equation involves a fractional diffusion operator so that the optimal decay rate is determined by a fractional Nash type inequality. At kinetic level we develop an $mathrm L^2$-hypocoercivity approach and establish a rate of decay compatible with the fractional diffusion limit.
In this paper, hypocoercivity methods are applied to linear kinetic equations with mass conservation and without confinement, in order to prove that the solutions have an algebraic decay rate in the long-time range, which the same as the rate of the
We propose an approach to obtaining explicit estimates on the resolvent of hypocoercive operators by using Schur complements, rather than from an exponential decay of the evolution semigroup combined with a time integral. We present applications to L
Hypocoercivity methods are applied to linear kinetic equations without any space confinement, when local equilibria have a sub-exponential decay. By Nash type estimates, global rates of decay are obtained, which reflect the behavior of the heat equat
This paper is dealing with two $L^2$ hypocoercivity methods based on Fourier decomposition and mode-by-mode estimates, with applications to rates of convergence or decay in kinetic equations on the torus and on the whole Euclidean space. The main ide
A reaction-kinetic model for a two-species gas mixture undergoing pair generation and recombination reactions is considered on a flat torus. For dominant scattering with a non-moving constant-temperature background the macroscopic limit to a reaction