ﻻ يوجد ملخص باللغة العربية
Asymmetric dark matter (ADM) is an attractive framework relating the observed baryon asymmetry of the Universe to the dark matter density. A composite particle in a new strong dynamics is a promising candidate for ADM as the strong dynamics naturally explains the ADM mass in the GeV range. Its large annihilation cross section due to the strong dynamics leaves the asymmetric component to be dominant over the symmetric component. In such composite ADM scenarios, the dark sector has a relatively large entropy density in the early Universe. The large dark sector entropy results in the overclosure of the Universe or at best contradicts with the observations of the cosmic microwave background and the successful Big-Bang Nucleosynthesis. Thus, composite ADM models generically require some portal to transfer the entropy of the dark sector into the Standard Model sector. In this paper, we consider a dark photon portal with a mass in the sub-GeV range and kinetic mixing with the Standard Model photon. We investigate the viable parameter space of the dark photon in detail, which can find broad applications to dark photon portal models. We also provide a simple working example of composite ADM with a dark photon portal. Our model is compatible with thermal leptogenesis and $B - L$ symmetry. By taking into account the derived constraints, we show that the parameter space is largely tested by direct detection experiments.
Composite asymmetric dark matter scenarios naturally explain why the dark matter mass density is comparable with the visible matter mass density. Such scenarios generically require some entropy transfer mechanism below the composite scale; otherwise,
The asymmetric dark matter (ADM) scenario can solve the coincidence problem between the baryon and the dark matter (DM) abundance when the DM mass is of ${cal O}(1),$GeV. In the ADM scenarios, composite dark matter is particularly motivated, as it ca
The asymmetric dark matter (ADM) scenario solves the baryon-dark matter coincidence problem when the dark matter (DM) mass is of $mathcal{O}(1)$GeV. Composite ADM models based on QCD-like strong dynamics are particularly motivated since the strong dy
We examine the possibility that dark matter (DM) consists of a gapped continuum, rather than ordinary particles. A Weakly-Interacting Continuum (WIC) model, coupled to the Standard Model via a Z-portal, provides an explicit realization of this idea.
We propose a new portal coupling to dark matter by taking advantage of the nonminimally coupled portal sector to the Ricci scalar. Such a portal sector conformally induces couplings to the trace of the energy-momentum tensor of matters including high