ﻻ يوجد ملخص باللغة العربية
Using the shifted-excitation Raman difference spectroscopy technique and an optical fibre featuring a negative curvature excitation core and a coaxial ring of high numerical aperture collection cores, we have developed a portable, background and fluorescence free, endoscopic Raman probe. The probe consists of a single fibre with a diameter of less than 0.25 mm packaged in a sub-millimetre tubing, making it compatible with standard bronchoscopes. The Raman excitation light in the fibre is guided in air and therefore interacts little with silica, enabling an almost background free transmission of the excitation light. In addition, we used the shifted-excitation Raman difference spectroscopy technique and a tunable 785 nm laser to separate the fluorescence and the Raman spectrum from highly fluorescent samples, demonstrating the suitability of the probe for biomedical applications. Using this probe we also acquired fluorescence free human lung tissue data.
Coherent Raman scattering microscopy is a fast, label-free and chemically specific imaging technique that has a high potential for future in-vivo optical histology. However, its imaging depth into tissues is limited to the sub-millimeter range by abs
Multimode fibres are becoming increasingly attractive in optical endoscopy as they promise to enable unparalleled miniaturisation, spatial resolution and cost as compared to conventional fibre bundle-based counterpart. However, achieving high-speed i
We demonstrate a compact and versatile laser system for stimulated Raman spectroscopy (SRS). The system is based on a tunable continuous wave (CW) probe laser combined with a home-built semi-monolithic nanosecond pulsed pump Nd:YVO4 laser at 1064 nm.
We demonstrate a simple technique to measure the resonant frequency of the 398.9 nm 1S0 - 1P1 transition for the different Yb isotopes. The technique, that works by observing and aligning fluorescence spots, has enabled us to measure transition frequ
We propose an efficient scheme for the generation and the manipulation of Raman fields in an homogeneously broadened atomic vapor in a closed three levels $Lambda$-configuration. The key concept in generating the Raman and sub-Raman fields efficientl