ترغب بنشر مسار تعليمي؟ اضغط هنا

Sub millimetre flexible fibre probe for background and fluorescence free Raman spectroscopy

106   0   0.0 ( 0 )
 نشر من قبل Stephanos Yerolatsitis
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the shifted-excitation Raman difference spectroscopy technique and an optical fibre featuring a negative curvature excitation core and a coaxial ring of high numerical aperture collection cores, we have developed a portable, background and fluorescence free, endoscopic Raman probe. The probe consists of a single fibre with a diameter of less than 0.25 mm packaged in a sub-millimetre tubing, making it compatible with standard bronchoscopes. The Raman excitation light in the fibre is guided in air and therefore interacts little with silica, enabling an almost background free transmission of the excitation light. In addition, we used the shifted-excitation Raman difference spectroscopy technique and a tunable 785 nm laser to separate the fluorescence and the Raman spectrum from highly fluorescent samples, demonstrating the suitability of the probe for biomedical applications. Using this probe we also acquired fluorescence free human lung tissue data.



قيم البحث

اقرأ أيضاً

Coherent Raman scattering microscopy is a fast, label-free and chemically specific imaging technique that has a high potential for future in-vivo optical histology. However, its imaging depth into tissues is limited to the sub-millimeter range by abs orption and scattering. Performing coherent Raman imaging in a fiber endoscope system is a crucial step to image deep inside living tissues and provide the information inaccessible with current microscopy tools. However the development of coherent Raman endoscopy has been hampered by several issues in the fiber delivery of the excitation pulses and signal collection. Here, we present a flexible, compact, and multimodal nonlinear endoscope (4.2 mm outer diameter, 71 mm rigid length) based on a resonantly scanned hollow-core Kagome-lattice double-clad fiber. The fiber design allows distortion-less, background-free delivery of femtosecond excitation pulses and the back-collection of nonlinear signals through the same fiber. Sub-micron spatial resolution together with large field of view is made possible by the combination of a miniature objective lens together with a silica microsphere lens inserted into the fiber core. We demonstrate coherent anti-Stokes Raman scattering, 2-photon fluorescence and second harmonic generation imaging with 0.8 {mu}m resolution over a field of view up to 320 {mu}m and at a rate of 0.8 frames/s. These results pave the way for intra-operative label-free imaging applied to real-time histopathology diagnosis and surgery guidance.
Multimode fibres are becoming increasingly attractive in optical endoscopy as they promise to enable unparalleled miniaturisation, spatial resolution and cost as compared to conventional fibre bundle-based counterpart. However, achieving high-speed i maging through a multimode fibre (MMF) based on wavefront shaping has been challenging due to the use of liquid crystal spatial light modulators with low frame rates. In this work, we report the development of a video-rate dual-modal forward-viewing photoacoustic (PA) and fluorescence endo-microscopy probe based on a MMF and a high-speed digital micromirror device (DMD). Light transmission characteristics through the fibre were characterised with a real-valued intensity transmission matrix algorithm, and subsequently, optimal binary patterns were calculated to focus light through the fibre with wavefront shaping. Raster-scanning of a tightly focused beam (1.5 {mu}m diameter) at the distal end of the fibre was performed for imaging. With the DMD running at 10 kHz, the PA imaging speed and spatial resolution of were controlled by varying the scanning step size, ranging from 1 to 25 frames per second (fps) and from 1.7 to 3 {mu}m, respectively, over a field-of-view of 50 {mu}m x 50 {mu}m. High-resolution PA images of carbon fibres, and mouse red blood cells were acquired through a MMF with high image fidelity at unprecedented speed with MMF-based PA endoscope. The capability of dual-modal PA and fluorescence imaging was demonstrated by imaging phantoms comparing carbon fibres and fluorescent microspheres. We anticipate that with further miniaturisation of the ultrasound detector, this probe could be integrated into a medical needle to guide minimally invasive procedures in several clinical contexts including tumour biopsy and nerve blocks.
We demonstrate a compact and versatile laser system for stimulated Raman spectroscopy (SRS). The system is based on a tunable continuous wave (CW) probe laser combined with a home-built semi-monolithic nanosecond pulsed pump Nd:YVO4 laser at 1064 nm. The CW operation of the probe laser offers narrow linewidth, low noise and the advantage that temporal synchronization with the pump is not required. The laser system enables polarization-sensitive stimulated Raman spectroscopy (PS-SRS) with fast high resolution measurement of the depolarization ratio by simultaneous detection of Raman scattered light in orthogonal polarizations, thus providing information about the symmetry of the Raman-active vibrational modes. Measurements of the depolarization ratios of the carbon-hydrogen (CH) stretching modes in two different polymer samples in the spectral range of 2825-3025 cm-1 were performed. Raman spectra are obtained at a sweep rate of 20 nm/s (84 cm-1/s) with a resolution of 0.65 cm-1. A normalization method is introduced for the direct comparison of the simultaneously acquired orthogonal polarized Raman spectra.
We demonstrate a simple technique to measure the resonant frequency of the 398.9 nm 1S0 - 1P1 transition for the different Yb isotopes. The technique, that works by observing and aligning fluorescence spots, has enabled us to measure transition frequ encies and isotope shifts with an accuracy of 60 MHz. We provide wavelength measurements for the transition that differ from previously published work. Our technique also allows for the determination of Doppler shifted transition frequencies for photoionisation experiments when the atomic beam and laser beam are not perpendicular and furthermore allows us to determine the average velocity of the atoms along the direction of atomic beam.
160 - Pankaj K. Jha , Sumanta Das , 2012
We propose an efficient scheme for the generation and the manipulation of Raman fields in an homogeneously broadened atomic vapor in a closed three levels $Lambda$-configuration. The key concept in generating the Raman and sub-Raman fields efficientl y at lower optical densities involve the microwave induced atomic coherence of the lower levels. We show explicitly that, generation efficiency of the Raman fields can be controlled by manipulating the coherences via phase and amplitude of the microwave field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا