ﻻ يوجد ملخص باللغة العربية
Coherent Raman scattering microscopy is a fast, label-free and chemically specific imaging technique that has a high potential for future in-vivo optical histology. However, its imaging depth into tissues is limited to the sub-millimeter range by absorption and scattering. Performing coherent Raman imaging in a fiber endoscope system is a crucial step to image deep inside living tissues and provide the information inaccessible with current microscopy tools. However the development of coherent Raman endoscopy has been hampered by several issues in the fiber delivery of the excitation pulses and signal collection. Here, we present a flexible, compact, and multimodal nonlinear endoscope (4.2 mm outer diameter, 71 mm rigid length) based on a resonantly scanned hollow-core Kagome-lattice double-clad fiber. The fiber design allows distortion-less, background-free delivery of femtosecond excitation pulses and the back-collection of nonlinear signals through the same fiber. Sub-micron spatial resolution together with large field of view is made possible by the combination of a miniature objective lens together with a silica microsphere lens inserted into the fiber core. We demonstrate coherent anti-Stokes Raman scattering, 2-photon fluorescence and second harmonic generation imaging with 0.8 {mu}m resolution over a field of view up to 320 {mu}m and at a rate of 0.8 frames/s. These results pave the way for intra-operative label-free imaging applied to real-time histopathology diagnosis and surgery guidance.
Two-dimensional Talbot array illuminators (TAIs) were designed, fabricated, and evaluated for high-resolution high-contrast x-ray phase imaging of soft tissue at 10-20keV. The TAIs create intensity modulations with a high compression ratio on the mic
Currently, dual-energy X-ray phase contrast imaging is usually conducted with an X-ray Talbot-Lau interferometer. However, in this system, the two adopted energy spectra have to be chosen carefully in order to match well with the phase grating. For e
Using the shifted-excitation Raman difference spectroscopy technique and an optical fibre featuring a negative curvature excitation core and a coaxial ring of high numerical aperture collection cores, we have developed a portable, background and fluo
We present spectroscopic experiments and theory of a quantum dot driven bichromatically by two strong coherent lasers. In particular, we explore the regime where the drive strengths are substantial enough to merit a general non-perturbative analysis,
Photoacoustic microscopy (PAM) is a promising imaging modality because it is able to reveal optical absorption contrast in high resolution on the order of a micrometer. It can be applied in an endoscopic approach by implementing PAM into a miniature