ترغب بنشر مسار تعليمي؟ اضغط هنا

Sequential Attacks on Kalman Filter-based Forward Collision Warning Systems

210   0   0.0 ( 0 )
 نشر من قبل Yuzhe Ma
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Kalman Filter (KF) is widely used in various domains to perform sequential learning or variable estimation. In the context of autonomous vehicles, KF constitutes the core component of many Advanced Driver Assistance Systems (ADAS), such as Forward Collision Warning (FCW). It tracks the states (distance, velocity etc.) of relevant traffic objects based on sensor measurements. The tracking output of KF is often fed into downstream logic to produce alerts, which will then be used by human drivers to make driving decisions in near-collision scenarios. In this paper, we study adversarial attacks on KF as part of the more complex machine-human hybrid system of Forward Collision Warning. Our attack goal is to negatively affect human braking decisions by causing KF to output incorrect state estimations that lead to false or delayed alerts. We accomplish this by sequentially manipulating measure ments fed into the KF, and propose a novel Model Predictive Control (MPC) approach to compute the optimal manipulation. Via experiments conducted in a simulated driving environment, we show that the attacker is able to successfully change FCW alert signals through planned manipulation over measurements prior to the desired target time. These results demonstrate that our attack can stealthily mislead a distracted human driver and cause vehicle collisions.



قيم البحث

اقرأ أيضاً

Many state estimation and control algorithms require knowledge of how probability distributions propagate through dynamical systems. However, despite hybrid dynamical systems becoming increasingly important in many fields, there has been little work on utilizing the knowledge of how probability distributions map through hybrid transitions. Here, we make use of a propagation law that employs the saltation matrix (a first-order update to the sensitivity equation) to create the Salted Kalman Filter (SKF), a natural extension of the Kalman Filter and Extended Kalman Filter to hybrid dynamical systems. Away from hybrid events, the SKF is a standard Kalman filter. When a hybrid event occurs, the saltation matrix plays an analogous role as that of the system dynamics, subsequently inducing a discrete modification to both the prediction and update steps. The SKF outperforms a naive variational update - the Jacobian of the reset map - by having a reduced mean squared error in state estimation, especially immediately after a hybrid transition event. Compared a hybrid particle filter, the particle filter outperforms the SKF in mean squared error only when a large number of particles are used, likely due to a more accurate accounting of the split distribution near a hybrid transition.
With the recent advance of deep learning based object recognition and estimation, it is possible to consider object level SLAM where the pose of each object is estimated in the SLAM process. In this paper, based on a novel Lie group structure, a righ t invariant extended Kalman filter (RI-EKF) for object based SLAM is proposed. The observability analysis shows that the proposed algorithm automatically maintains the correct unobservable subspace, while standard EKF (Std-EKF) based SLAM algorithm does not. This results in a better consistency for the proposed algorithm comparing to Std-EKF. Finally, simulations and real world experiments validate not only the consistency and accuracy of the proposed algorithm, but also the practicability of the proposed RI-EKF for object based SLAM problem. The MATLAB code of the algorithm is made publicly available.
Inertial measurement units are widely used in different fields to estimate the attitude. Many algorithms have been proposed to improve estimation performance. However, most of them still suffer from 1) inaccurate initial estimation, 2) inaccurate ini tial filter gain, and 3) non-Gaussian process and/or measurement noise. In this paper, we leverage reinforcement learning to compensate for the classical extended Kalman filter estimation, i.e., to learn the filter gain from the sensor measurements. We also analyse the convergence of the estimate error. The effectiveness of the proposed algorithm is validated on both simulated data and real data.
121 - Qinbing Fu , Shigang Yue 2020
Inspired by insects visual brains, this paper presents original modelling of a complementary visual neuronal systems model for real-time and robust collision sensing. Two categories of wide-field motion sensitive neurons, i.e., the lobula giant movem ent detectors (LGMDs) in locusts and the lobula plate tangential cells (LPTCs) in flies, have been studied, intensively. The LGMDs have specific selectivity to approaching objects in depth that threaten collision; whilst the LPTCs are only sensitive to translating objects in horizontal and vertical directions. Though each has been modelled and applied in various visual scenes including robot scenarios, little has been done on investigating their complementary functionality and selectivity when functioning together. To fill this vacancy, we introduce a hybrid model combining two LGMDs (LGMD-1 and LGMD-2) with horizontally (rightward and leftward) sensitive LPTCs (LPTC-R and LPTC-L) specialising in fast collision perception. With coordination and competition between different activated neurons, the proximity feature by frontal approaching stimuli can be largely sharpened up by suppressing translating and receding motions. The proposed method has been implemented in ground micro-mobile robots as embedded systems. The multi-robot experiments have demonstrated the effectiveness and robustness of the proposed model for frontal collision sensing, which outperforms previous single-type neuron computation methods against translating interference.
73 - Lubin Chang 2017
This note is devoted to deriving the measurement update of the geometric extended Kalman filter using the multiplicative extended Kalman filtering approach, resulting in the attitude estimator referred as geometric multiplicative extended Kalman filt er. The equivalence of the derived geometric multiplicative extended Kalman filter and geometric extended Kalman filter is also demonstrated in this note.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا