ﻻ يوجد ملخص باللغة العربية
Quantum Gravity is expected to resolve the singularities of classical General Relativity. Based on destructive interference of singular spacetime-configurations in the path integral, we find that higher-order curvature terms may allow to resolve black-hole singularities both in the spherically symmetric and axisymmetric case. In contrast, the Einstein action does not provide a dynamical mechanism for singularity-resolution through destructive interference of these configurations.
The global hyperbolicity assumption present in gravitational collapse singularity theorems is in tension with the quantum mechanical phenomenon of black hole evaporation. In this work I show that the causality conditions in Penroses theorem can be al
We present a quantum description of black holes with a matter core given by coherent states of gravitons. The expected behaviour in the weak-field region outside the horizon is recovered, with arbitrarily good approximation, but the classical central
In this paper, we derive the solutions of orbit equations for a class of naked singularity spacetimes, and compare these with timelike orbits, that is, particle trajectories in the Schwarzschild black hole spacetime. The Schwarzschild and naked singu
At the 20-th Texas Symposium on Relativistic Astrophysics there was a plenary talk devoted to the recent developments in classical Relativity. In that talk the problems of gravitational collapse, collisions of black holes, and of black holes as celes
We derive here the orbit equations of particles in naked singularity spacetimes, namely the Bertrand (BST) and Janis-Newman-Winicour (JNW) geometries, and for the Schwarzschild black hole. We plot the orbit equations and find the Perihelion precessio