ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards black-hole singularity-resolution in the Lorentzian gravitational path integral

129   0   0.0 ( 0 )
 نشر من قبل Astrid Eichhorn
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum Gravity is expected to resolve the singularities of classical General Relativity. Based on destructive interference of singular spacetime-configurations in the path integral, we find that higher-order curvature terms may allow to resolve black-hole singularities both in the spherically symmetric and axisymmetric case. In contrast, the Einstein action does not provide a dynamical mechanism for singularity-resolution through destructive interference of these configurations.

قيم البحث

اقرأ أيضاً

79 - E. Minguzzi 2019
The global hyperbolicity assumption present in gravitational collapse singularity theorems is in tension with the quantum mechanical phenomenon of black hole evaporation. In this work I show that the causality conditions in Penroses theorem can be al most completely removed. As a result, it is possible to infer the formation of spacetime singularities even in the absence of predictability and hence compatibly with quantum field theory and black hole evaporation.
141 - Roberto Casadio 2021
We present a quantum description of black holes with a matter core given by coherent states of gravitons. The expected behaviour in the weak-field region outside the horizon is recovered, with arbitrarily good approximation, but the classical central singularity cannot be resolved because the coherent states do not contain modes of arbitrarily short wavelength. Ensuing quantum corrections both in the interior and exterior are also estimated by assuming the mean-field approximation continues to hold. These deviations from the classical black hole geometry could result in observable effects in the gravitational collapse of compact objects and both astrophysical and microscopic black holes.
In this paper, we derive the solutions of orbit equations for a class of naked singularity spacetimes, and compare these with timelike orbits, that is, particle trajectories in the Schwarzschild black hole spacetime. The Schwarzschild and naked singu larity spacetimes considered here can be formed as end state of a spherically symmetric gravitational collapse of a matter cloud. We find and compare the perihelion precession of the particle orbits in the naked singularity spacetime with that of the Schwarzschild black hole. We then discuss different distinguishable physical properties of timelike orbits in the black hole and naked singularity spacetimes and implications are discussed. Several interesting differences follow from our results, including the conclusion that in naked singularity spacetimes, particle bound orbits can precess in the opposite direction of particle motion, which is not possible in Schwarzschild spacetime.
112 - Igor D. Novikov 2003
At the 20-th Texas Symposium on Relativistic Astrophysics there was a plenary talk devoted to the recent developments in classical Relativity. In that talk the problems of gravitational collapse, collisions of black holes, and of black holes as celes tial bodies were discussed. But probably the problems of the internal structure of black holes are a real great challenge. In my talk I want to outline the recent achievements in our understanding of the nature of the singularity (and beyond!) inside a realistic rotating black hole. This presentation also addresses the following questions: Can we see what happens inside a black hole? Can a falling observer cross the singularity without being crushed? An answer to these questions is probably yes.
We derive here the orbit equations of particles in naked singularity spacetimes, namely the Bertrand (BST) and Janis-Newman-Winicour (JNW) geometries, and for the Schwarzschild black hole. We plot the orbit equations and find the Perihelion precessio n of the orbits of particles in the BST and JNW spacetimes and compare these with the Schwarzschild black hole spacetime. We find and discuss different distinguishing properties in the effective potentials and orbits of particle in BST, JNW and Schwarzschild spacetimes, and the particle trajectories are shown for the matching of BST with an external Schwarzschild spacetime. We show that the nature of perihelion precession of orbits in BST and Schwarzschild spacetimes are similar, while in the JNW case the nature of perihelion precession of orbits is opposite to that of the Schwarzschild and BST spacetimes. Other interesting and important features of these orbits are pointed out.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا