ترغب بنشر مسار تعليمي؟ اضغط هنا

Developments in General Relativity: Black Hole Singularity and Beyond

113   0   0.0 ( 0 )
 نشر من قبل Igor Novikov
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Igor D. Novikov




اسأل ChatGPT حول البحث

At the 20-th Texas Symposium on Relativistic Astrophysics there was a plenary talk devoted to the recent developments in classical Relativity. In that talk the problems of gravitational collapse, collisions of black holes, and of black holes as celestial bodies were discussed. But probably the problems of the internal structure of black holes are a real great challenge. In my talk I want to outline the recent achievements in our understanding of the nature of the singularity (and beyond!) inside a realistic rotating black hole. This presentation also addresses the following questions: Can we see what happens inside a black hole? Can a falling observer cross the singularity without being crushed? An answer to these questions is probably yes.



قيم البحث

اقرأ أيضاً

81 - Enrico Barausse 2019
The recent detections of gravitational waves from binary systems of black holes are in remarkable agreement with the predictions of General Relativity. In this pedagogical mini-review, I will go through the physics of the different phases of the evol ution of black hole binary systems, providing a qualitative physical interpretation of each one of them. I will also briefly describe how these phases would be modified if gravitation were described by a theory extending or deforming General Relativity, or if the binary components turned out to be more exotic compact objects than black holes.
The Florides solution, proposed as an alternative to the interior Schwarzschild solution, represents a static and spherically symmetric geometry with vanishing radial stresses. It is regular at the center, and is matched to an exterior Schwarzschild solution. The specific case of a constant energy density has been interpreted as the field inside an Einstein cluster. In this work, we are interested in analyzing the geometry throughout the permitted range of the radial coordinate without matching it to the Schwarzschild exterior spacetime at some constant radius hypersurface. We find an interesting picture, namely, the solution represents a three-sphere, whose equatorial two-sphere is singular, in the sense that the curvature invariants and the tangential pressure diverge. As far as we know, such singularities have not been discussed before. In the presence of a large negative cosmological constant (anti-de Sitter) the singularity is removed.
We produce the first astrophysically-relevant numerical binary black hole gravitational waveform in a higher-curvature theory of gravity beyond general relativity. We simulate a system with parameters consistent with GW150914, the first LIGO detectio n, in order-reduced dynamical Chern-Simons gravity, a theory with motivations in string theory and loop quantum gravity. We present results for the leading-order corrections to the merger and ringdown waveforms, as well as the ringdown quasi-normal mode spectrum. We estimate that such corrections may be discriminated in detections with signal to noise ratio $gtrsim 180-240$, with the precise value depending on the dimension of the GR waveform family used in data analysis.
In this work, new solutions for regular black holes that have multihorizons are proposed. These are formed by the direct product of solutions already published in the literature, which are described through the coupling of gravity with nonlinear elec trodynamics. We analyze the regularity of the spacetime, the electric field, and the energy conditions of each solution. The strong energy condition is always violated within the event horizon in all solutions, while other energy conditions depend on the ratio between extreme charges of isolated solutions. For solutions with four horizons, we present two examples, Bardeen-Culetu and Balart-Culetu. Both solutions are regular, but the first do not satisfy all the energy conditions, except the strong, because it has an extreme charge ratio of 1.57581, great value. The second solution, on the other hand, can satisfy all other energy conditions, except the SEC, and has an extreme charge ratio of 1.09915, a value that allows this feature. Its also proposed a regular solution with up to six horizons, Balart-Culetu-Dymnikova, where, for a given charge value, we can verify that it satisfies all energy conditions, except the strong one. This was possible due to the ratio between extreme charges that are neither too high nor too close. We propose solutions with any number of horizons. We show that points where $-F(r)$ has a non null minimum represent a cusp in the Lagrangian $-L(F)$. We also show an example of multihorizon solution with magnetic charge. Multihorizon solutions may exhibit exotic properties, such as negative energy density, or violation of energy conditions, but which can be circumvented with a selected choice of customized solutions and extreme charge values, resulting in regular black hole solutions that satisfy all energy conditions, less the strong.
We present a code for solving the coupled Einstein-hydrodynamics equations to evolve relativistic, self-gravitating fluids. The Einstein field equations are solved in generalized harmonic coordinates on one grid using pseudospectral methods, while th e fluids are evolved on another grid using shock-capturing finite difference or finite volume techniques. We show that the code accurately evolves equilibrium stars and accretion flows. Then we simulate an equal-mass nonspinning black hole-neutron star binary, evolving through the final four orbits of inspiral, through the merger, to the final stationary black hole. The gravitational waveform can be reliably extracted from the simulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا