ﻻ يوجد ملخص باللغة العربية
We consider limits of $mathcal{N} = 4$ super-Yang-Mills (SYM) theory that approach BPS bounds. These limits result in non-relativistic near-BPS theories that describe the effective dynamics near the BPS bounds and upon quantization are known as Spin Matrix theories. The near-BPS theories can be obtained by reducing $mathcal{N}=4$ SYM on a three-sphere and integrating out the fields that become non-dynamical in the limits. We perform the sphere reduction for the near-BPS limit with $mathrm{SU}(1,2|2)$ symmetry, which has several new features compared to the previously considered cases with $mathrm{SU}(1,1)$ symmetry, including a dynamical gauge field. We discover a new structure in the classical limit of the interaction term. We show that the interaction term is built from certain blocks that comprise an irreducible representation of the $mathrm{SU}(1,2|2)$ algebra. Moreover, the full interaction term can be interpreted as a norm in the linear space of this representation, explaining its features including the positive definiteness. This means one can think of the interaction term as a distance squared from saturating the BPS bound. The $mathrm{SU}(1,1|1)$ near-BPS theory, and its subcases, is seen to inherit these features. These observations point to a way to solve the strong coupling dynamics of these near-BPS theories.
We consider limits of $mathcal{N}=4$ super Yang-Mills (SYM) theory that approach BPS bounds and for which an $SU(1,1)$ structure is preserved. The resulting near-BPS theories become non-relativistic, with a $U(1)$ symmetry emerging in the limit that
We study singular time-dependent $frac{1}{8}$-BPS configurations in the abelian sector of ${{mathcal N}= 4}$ supersymmetric Yang-Mills theory that represent BPS string-like defects in ${{mathbb R}times S^3}$ spacetime. Such BPS strings can be describ
We consider the ambitwistor description of $mathcal N$=4 supersymmetric extension of U($N$) Yang-Mills theory on Minkowski space $mathbb R^{3,1}$. It is shown that solutions of super-Yang-Mills equations are encoded in real-analytic U($N$)-valued fun
We perform a numerical bootstrap study of the mixed correlator system containing the half-BPS operators of dimension two and three in $mathcal N = 4$ Super Yang-Mills. This setup improves on previous works in the literature that only considered singl
We study two-point functions of single-trace half-BPS operators in the presence of a supersymmetric Wilson line in $mathcal{N}=4$ SYM. We use inversion formula technology in order to reconstruct the CFT data starting from a single discontinuity of th