ﻻ يوجد ملخص باللغة العربية
We study two-point functions of single-trace half-BPS operators in the presence of a supersymmetric Wilson line in $mathcal{N}=4$ SYM. We use inversion formula technology in order to reconstruct the CFT data starting from a single discontinuity of the correlator. In the planar strong coupling limit only a finite number of conformal blocks contributes to the discontinuity, which allows us to obtain elegant closed-form expressions for two-point functions of single-trace operators $mathcal{O}_J$ of weight $J=2,3,4$. Our final result passes a number of non-trivial consistency checks: it has the correct discontinuity, it satisfies the superconformal Ward identities, it has a sensible expansion in both defect and bulk OPEs, and is consistent with available results coming from localization. The method is completely algorithmic and can be implemented to calculate correlators of arbitrary weight.
We perform a numerical bootstrap study of the mixed correlator system containing the half-BPS operators of dimension two and three in $mathcal N = 4$ Super Yang-Mills. This setup improves on previous works in the literature that only considered singl
The four dimensional $mathcal{N}=4$ super-Yang-Mills (SYM) theory exhibits rich dynamics in the presence of codimension-one conformal defects. The new structure constants of the extended operator algebra consist of one-point functions of local operat
This paper concerns a special class of $n$-point correlation functions of operators in the stress tensor supermultiplet of $mathcal{N}=4$ supersymmetric $SU(N)$ Yang-Mills theory. These are maximal $U(1)_Y$-violating correlators that violate the bonu
Quantum correlators of pure supersymmetric Yang-Mills theories in D=3,4,6 and 10 dimensions can be reformulated via the non-linear and non-local transformation (`Nicolai map) that maps the full functional measure of the interacting theory to that of
We consider the ambitwistor description of $mathcal N$=4 supersymmetric extension of U($N$) Yang-Mills theory on Minkowski space $mathbb R^{3,1}$. It is shown that solutions of super-Yang-Mills equations are encoded in real-analytic U($N$)-valued fun