ﻻ يوجد ملخص باللغة العربية
We used dedicated SRG/eROSITA X-ray, ASKAP/EMU radio, and DECam optical observations of a 15 sq.deg region around the interacting galaxy cluster system A3391/95 to study the warm-hot gas in cluster outskirts and filaments, the surrounding large-scale structure and its formation process. We relate the observations to expectations from cosmological hydrodynamic simulations from the Magneticum suite. We trace the irregular morphology of warm-hot gas of the main clusters from their centers out to well beyond their characteristic radii, $r_{200}$. Between the two main cluster systems, we observe an emission bridge; thanks to eROSITAs unique soft response and large field of view, we discover tantalizing hints for warm gas. Several matter clumps physically surrounding the system are detected. For the Northern Clump, we provide evidence that it is falling towards A3391 from the hot gas morphology and radio lobe structure of its central AGN. Many of the extended sources in the field detected by eROSITA are known clusters or new clusters in the background, including a known SZ cluster at redshift z=1. We discover an emission filament north of the virial radius, $r_{100}$, of A3391 connecting to the Northern Clump and extending south of A3395 towards another galaxy cluster. The total projected length of this continuous warm-hot emission filament is 15 Mpc, running almost 4 degrees across the entire eROSITA observation. The DECam galaxy density map shows galaxy overdensities in the same regions. The new datasets provide impressive confirmation of the theoretically expected structure formation processes on the individual system level, including the surrounding warm-hot intergalactic medium distribution compared to the Magneticum simulation. Our spatially resolved findings show that baryons indeed reside in large-scale warm-hot gas filaments with a clumpy structure.
SRG/eROSITA PV observations revealed the A3391/95 cluster system and the Northern Clump (MCXC J0621.7-5242 galaxy cluster) are aligning along a cosmic filament in soft X-rays, similarly to what has been seen in simulations before. We aim to understan
The results of Suzaku observations of the outskirts of Abell 3395 including a large-scale structure filament toward Abell 3391 are presented. We measured temperature and abundance distributions from the southern outskirt of Abell 3395 to the north at
We investigated the origin and gas properties of a simulated galaxy cluster pair, to connect simulation predictions to the SRG/eROSITA X-ray observations of the Abell 3391/95 field. The simulated system has been extracted from the (352 cMpc/h)^3 volu
The pre-merging system of galaxy clusters Abell 3391-Abell 3395 located at a mean redshift of 0.053 has been observed at 1 GHz in an ASKAP/EMU Early Science observation as well as in X-rays with eROSITA. The projected separation of the X-ray peaks of
The Evolutionary Map of the Universe (EMU) is a proposed radio continuum survey of the Southern Hemisphere up to declination +30 deg., with the Australian Square Kilometre Array Pathfinder (ASKAP). EMU will use an automated source identification and