ترغب بنشر مسار تعليمي؟ اضغط هنا

Suzaku Observations of the Outskirts of the Galaxy Cluster Abell 3395 including a Filament toward Abell 3391

149   0   0.0 ( 0 )
 نشر من قبل Motokazu Takizawa
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The results of Suzaku observations of the outskirts of Abell 3395 including a large-scale structure filament toward Abell 3391 are presented. We measured temperature and abundance distributions from the southern outskirt of Abell 3395 to the north at the virial radius, where a filament structure has been found in the former X-ray and Sunyaev-Zeldovich effect observations between Abell 3391 and 3395. The overall temperature structure is consistent with the universal profile proposed by Okabe et al.(2014) for relaxed clusters except for the filament region. A hint of the ICM heating is found between the two clusters, which might be due to the interaction of them in the early phase of a cluster merger. Although we obtained relatively low metal abundance of $Z=0.169^{+0.164+0.009+0.018 }_{-0.150-0.004-0.015 }$ solar, where the first, second, and third errors are statistical, cosmic X-ray background systematic, and non X-ray background systematic, respectively, at the virial radius in the filament, our results are still consistent with the former results of other clusters ($Z sim 0.3$ solar) within errors. Therefore, our results are also consistent with the early enrichment scenario. We estimated Compton $y$ parameters only from X-ray results in the region between Abell 3391 and 3395 assuming a simple geometry. They are smaller than the previous SZ results with Planck satellite. The difference could be attributed to a more elaborate geometry such as a filament inclined to the line-of-sight direction, or underestimation of the X-ray temperature because of the unresolved multi-temperature structures or undetected hot X-ray emission of the shock heated gas.



قيم البحث

اقرأ أيضاً

The pre-merging system of galaxy clusters Abell 3391-Abell 3395 located at a mean redshift of 0.053 has been observed at 1 GHz in an ASKAP/EMU Early Science observation as well as in X-rays with eROSITA. The projected separation of the X-ray peaks of the two clusters is $sim$50$$ or $sim$ 3.1 Mpc. Here we present an inventory of interesting radio sources in this field around this cluster merger. While the eROSITA observations provide clear indications of a bridge of thermal gas between the clusters, neither ASKAP nor MWA observations show any diffuse radio emission coinciding with the X-ray bridge. We derive an upper limit on the radio emissivity in the bridge region of $langle J rangle_{1,{rm GHz}}< 1.2 times 10^{-44} {rm W}, {rm Hz}^{-1} {rm m}^{-3}$. A non-detection of diffuse radio emission in the X-ray bridge between these two clusters has implications for particle-acceleration mechanisms in cosmological large-scale structure. We also report extended or otherwise noteworthy radio sources in the 30 deg$^2$ field around Abell 3391-Abell 3395. We identified 20 Giant Radio Galaxies, plus 7 candidates, with linear projected sizes greater than 1 Mpc. The sky density of field radio galaxies with largest linear sizes of $>0.7$ Mpc is $approx 1.7$ deg$^{-2}$, three times higher than previously reported. We find no evidence for a cosmological evolution of the population of Giant Radio Galaxies. Moreover, we find seven candidates for cluster radio relics and radio halos.
We present results of four-pointing Suzaku X-ray observations (total ~200 ks) of the intracluster medium (ICM) in the Abell 1835 galaxy cluster (kT ~ 8 keV, z = 0.253) out to the virial radius (r_vir ~ 2.9 Mpc) and beyond. Faint X-ray emission from t he ICM out to r_vir is detected. The temperature gradually decreases with radius from ~8 keV in the inner region to ~2 keV at r_vir. The entropy profile is shown to flatten beyond r_500, in disagreement with the r_1.1 dependence predicted from the accretion shock heating model. The thermal pressure profile in the range 0.3r_500 < r < r_vir agrees well with that obtained from the stacked Sunyaev-Zeldovich effect observations with the Planck satellite. The hydrostatic mass profile in the cluster outskirts (r_500 < r < r_vir) falls well short of the weak lensing one derived from Subaru/Suprime-Cam observations, showing an unphysical decrease with radius. The gas mass fraction at r_vir defined with the lensing total mass agrees with the cosmic baryon fraction from the WMAP 7-year data. All these results indicate, rather than the gas-clumping effect, that the bulk of the ICM in the cluster outskirts is far from hydrostatic equilibrium and infalling matter retained some of its kinetic energy. Finally, combining with our recent Suzaku and lensing analysis of Abell 1689, a cluster of similar mass, temperature, and redshift, we show that the cluster temperature distribution in the outskirts is significantly correlated with the galaxy density field in the surrounding large-scale environment at (1-2)r_vir.
We report Suzaku observations of the galaxy cluster Abell 1795 that extend to r_200 ~ 2 Mpc, the radius within which the mean cluster mass density is 200 times the cosmic critical density. These observations are the first to probe the state of the in tracluster medium in this object at r > 1.3 Mpc. We sample two disjoint sectors in the cluster outskirts (1.3 < r < 1.9 Mpc) and detect X-ray emission in only one of them to a limiting (3-sigma) soft X-ray surface brightness of B(0.5-2 keV) = 1.8 x 10^-12 erg s^-1 cm^-2 deg^-2, a level less than 20% of the cosmic X-ray background brightness. We trace the run of temperature with radius at r > 0.4 Mpc and find that it falls relatively rapidly (T ~ r^-0.9), reaching a value about one third of its peak at the largest radius we can measure it. Assuming the intracluster medium is in hydrostatic equilibrium and is polytropic, we find a polytropic index of 1.3 +0.3-0.2 and we estimate a mass of 4.1 +0.5-0.3 x 10^14 M_solar within 1.3 Mpc, somewhat (2.7-sigma) lower than that reported by previous observers. However, our observations provide evidence for departure from hydrostatic equilibrium at radii as small as r ~ 1.3 Mpc ~ r_500 in this apparently regular and symmetrical cluster.
For the first time, we explore the dynamics of the central region of a galaxy cluster within $r_{500}sim 600h^{-1}$~kpc from its center by combining optical and X-ray spectroscopy. We use (1) the caustic technique that identifies the cluster substruc tures and their galaxy members with optical spectroscopic data, and (2) the X-ray redshift fitting procedure that estimates the redshift distribution of the intracluster medium (ICM). We use the spatial and redshift distributions of the galaxies and of the X-ray emitting gas to associate the optical substructures to the X-ray regions. When we apply this approach to Abell 85 (A85), a complex dynamical structure of A85 emerges from our analysis: a galaxy group, with redshift $z=0.0509 pm 0.0021$ is passing through the cluster center along the line of sight dragging part of the ICM present in the cluster core; two additional groups, at redshift $z=0.0547 pm 0.0022$ and $z=0.0570 pm 0.0020$, are going through the cluster in opposite directions, almost perpendicularly to the line of sight, and have substantially perturbed the dynamics of the ICM. An additional group in the outskirts of A85, at redshift $z=0.0561 pm 0.0023$, is associated to a secondary peak of the X-ray emission, at redshift $z=0.0583^{+0.0039}_{-0.0047}$. Although our analysis and results on A85 need to be confirmed by high-resolution spectroscopy, they demonstrate how our new approach can be a powerful tool to constrain the formation history of galaxy clusters by unveiling their central and surrounding structures.
We present results from Chandra and XMM-Newton observations of Abell 98 (A98), a galaxy cluster with three major components: a relatively bright subcluster to the north (A98N), a disturbed subcluster to the south (A98S), and a fainter subcluster to t he far south (A98SS). We find evidence for surface brightness and temperature asymmetries in A98N consistent with a shock-heated region to the south, which could be created by an early stage merger between A98N and A98S. Deeper observations are required to confirm this result. We also find that A98S has an asymmetric core temperature structure, likely due to a separate ongoing merger. Evidence for this is also seen in optical data. A98S hosts a wide-angle tail (WAT) radio source powered by a central active galactic nucleus (AGN). We find evidence for a cavity in the intracluster medium (ICM) that has been evacuated by one of the radio lobes, suggesting that AGN feedback is operating in this system. Examples of cavities in non-cool core clusters are relatively rare. The three subclusters lie along a line in projection, suggesting the presence of a large-scale filament. We observe emission along the filament between A98N and A98S, and a surface brightness profile shows emission consistent with the overlap of the subcluster extended gas haloes. We find the temperature of this region is consistent with the temperature of the gas at similar radii outside this bridge region. Lastly, we examine the cluster dynamics using optical data. We conclude A98N and A98S are likely bound to one another, with a 67% probability, while A98S and A98SS are not bound at a high level of significance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا