ترغب بنشر مسار تعليمي؟ اضغط هنا

Classification and threshold dynamics of stochastic reaction networks

306   0   0.0 ( 0 )
 نشر من قبل Chuang Xu
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Stochastic reaction networks (SRNs) provide models of many real-world networks. Examples include networks in epidemiology, pharmacology, genetics, ecology, chemistry, and social sciences. Here, we model stochastic reaction networks by continuous time Markov chains (CTMCs) and derive new results on the decomposition of the ambient space $mathbb{N}^d_0$ (with $dge 1$ the number of species) into communicating classes. In particular, we propose to study (minimal) core networks of an SRN, and show that these characterize the decomposition of the ambient space. Special attention is given to one-dimensional mass-action SRNs (1-d stoichiometric subspace). In terms of (up to) four parameters, we provide sharp checkable criteria for various dynamical properties (including explosivity, recurrence, ergodicity, and the tail asymptotics of stationary or quasi-stationary distributions) of SRNs in the sense of their underlying CTMCs. As a result, we prove that all 1-d endotactic networks are non-explosive, and positive recurrent with an ergodic stationary distribution with Conley-Maxwell-Poisson (CMP)-like tail, provided they are essential. In particular, we prove the recently proposed positive recurrence conjecture in one dimension: Weakly reversible mass-action SRNs with 1-d stoichiometric subspaces are positive recurrent. The proofs of the main results rely on our recent work on CTMCs with polynomial transition rate functions.

قيم البحث

اقرأ أيضاً

This article introduces and solves a general class of fully coupled forward-backward stochastic dynamics by investigating the associated system of functional differential equations. As a consequence, we are able to solve many different types of forwa rd-backward stochastic differential equations (FBSDEs) that do not fit in the classical setting. In our approach, the equations are running in the same time direction rather than in a forward and backward way, and the conflicting nature of the structure of FBSDEs is therefore avoided.
We consider the relationship between stationary distributions for stochastic models of reaction systems and Lyapunov functions for their deterministic counterparts. Specifically, we derive the well known Lyapunov function of reaction network theory a s a scaling limit of the non-equilibrium potential of the stationary distribution of stochastically modeled complex balanced systems. We extend this result to general birth-death models and demonstrate via example that similar scaling limits can yield Lyapunov functions even for models that are not complex or detailed balanced, and may even have multiple equilibria.
We consider stochastically modeled chemical reaction systems with mass-action kinetics and prove that a product-form stationary distribution exists for each closed, irreducible subset of the state space if an analogous deterministically modeled syste m with mass-action kinetics admits a complex balanced equilibrium. Feinbergs deficiency zero theorem then implies that such a distribution exists so long as the corresponding chemical network is weakly reversible and has a deficiency of zero. The main parameter of the stationary distribution for the stochastically modeled system is a complex balanced equilibrium value for the corresponding deterministically modeled system. We also generalize our main result to some non-mass-action kinetics.
Deficiency zero is an important network structure and has been the focus of many celebrated results within reaction network theory. In our previous paper textit{Prevalence of deficiency zero reaction networks in an ErdH os-Renyi framework}, we provid ed a framework to quantify the prevalence of deficiency zero among randomly generated reaction networks. Specifically, given a randomly generated binary reaction network with $n$ species, with an edge between two arbitrary vertices occurring independently with probability $p_n$, we established the threshold function $r(n)=frac{1}{n^3}$ such that the probability of the random network being deficiency zero converges to 1 if $frac{p_n}{r(n)}to 0$ and converges to 0 if $frac{p_n}{r(n)}toinfty$, as $n to infty$. With the base ErdH os-Renyi framework as a starting point, the current paper provides a significantly more flexible framework by weighting the edge probabilities via control parameters $alpha_{i,j}$, with $i,jin {0,1,2}$ enumerating the types of possible vertices (zeroth, first, or second order). The control parameters can be chosen to generate random reaction networks with a specific underlying structure, such as closed networks with very few inflow and outflow reactions, or open networks with abundant inflow and outflow. Under this new framework, for each choice of control parameters ${alpha_{i,j}}$, we establish a threshold function $r(n,{alpha_{i,j}})$ such that the probability of the random network being deficiency zero converges to 1 if $frac{p_n}{r(n,{alpha_{i,j}})}to 0$ and converges to 0 if $frac{p_n}{r(n,{alpha_{i,j}})}to infty$.
124 - Elise Janvresse 2011
For a real number $0<lambda<2$, we introduce a transformation $T_lambda$ naturally associated to expansion in $lambda$-continued fraction, for which we also give a geometrical interpretation. The symbolic coding of the orbits of $T_lambda$ provides a n algorithm to expand any positive real number in $lambda$-continued fraction. We prove the conjugacy between $T_lambda$ and some $beta$-shift, $beta>1$. Some properties of the map $lambdamapstobeta(lambda)$ are established: It is increasing and continuous from $]0, 2[$ onto $]1,infty[$ but non-analytic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا