ترغب بنشر مسار تعليمي؟ اضغط هنا

Pushing automated morphological classifications to their limits with the Dark Energy Survey

57   0   0.0 ( 0 )
 نشر من قبل Jes\\'us Vega-Ferrero
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present morphological classifications of $sim$27 million galaxies from the Dark Energy Survey (DES) Data Release 1 (DR1) using a supervised deep learning algorithm. The classification scheme separates: (a) early-type galaxies (ETGs) from late-types (LTGs); and (b) face-on galaxies from edge-on. Our Convolutional Neural Networks (CNNs) are trained on a small subset of DES objects with previously known classifications. These typically have $mathrm{m}_r lesssim 17.7~mathrm{mag}$; we model fainter objects to $mathrm{m}_r < 21.5$ mag by simulating what the brighter objects with well determined classifications would look like if they were at higher redshifts. The CNNs reach 97% accuracy to $mathrm{m}_r<21.5$ on their training sets, suggesting that they are able to recover features more accurately than the human eye. We then used the trained CNNs to classify the vast majority of the other DES images. The final catalog comprises five independent CNN predictions for each classification scheme, helping to determine if the CNN predictions are robust or not. We obtain secure classifications for $sim$ 87% and 73% of the catalog for the ETG vs. LTG and edge-on vs. face-on models, respectively. Combining the two classifications (a) and (b) helps to increase the purity of the ETG sample and to identify edge-on lenticular galaxies (as ETGs with high ellipticity). Where a comparison is possible, our classifications correlate very well with Sersic index (textit{n}), ellipticity ($epsilon$) and spectral type, even for the fainter galaxies. This is the largest multi-band catalog of automated galaxy morphologies to date.



قيم البحث

اقرأ أيضاً

We present the data release paper for the Galaxy Zoo: Hubble (GZH) project. This is the third phase in a large effort to measure reliable, detailed morphologies of galaxies by using crowdsourced visual classifications of colour composite images. Imag es in GZH were selected from various publicly-released Hubble Space Telescope Legacy programs conducted with the Advanced Camera for Surveys, with filters that probe the rest-frame optical emission from galaxies out to $z sim 1$. The bulk of the sample is selected to have $m_{I814W} < 23.5$,but goes as faint as $m_{I814W} < 26.8$ for deep images combined over 5 epochs. The median redshift of the combined samples is $z = 0.9 pm 0.6$, with a tail extending out to $z sim 4$. The GZH morphological data include measurements of both bulge- and disk-dominated galaxies, details on spiral disk structure that relate to the Hubble type, bar identification, and numerous measurements of clump identification and geometry. This paper also describes a new method for calibrating morphologies for galaxies of different luminosities and at different redshifts by using artificially-redshifted galaxy images as a baseline. The GZH catalogue contains both raw and calibrated morphological vote fractions for 119,849 galaxies, providing the largest dataset to date suitable for large-scale studies of galaxy evolution out to $z sim 1$.
We perform a search for stellar streams around the Milky Way using the first three years of multi-band optical imaging data from the Dark Energy Survey (DES). We use DES data covering $sim 5000$ sq. deg. to a depth of $g > 23.5$ with a relative photo metric calibration uncertainty of $< 1 %$. This data set yields unprecedented sensitivity to the stellar density field in the southern celestial hemisphere, enabling the detection of faint stellar streams to a heliocentric distance of $sim 50$ kpc. We search for stellar streams using a matched-filter in color-magnitude space derived from a synthetic isochrone of an old, metal-poor stellar population. Our detection technique recovers four previously known thin stellar streams: Phoenix, ATLAS, Tucana III, and a possible extension of Molonglo. In addition, we report the discovery of eleven new stellar streams. In general, the new streams detected by DES are fainter, more distant, and lower surface brightness than streams detected by similar techniques in previous photometric surveys. As a by-product of our stellar stream search, we find evidence for extra-tidal stellar structure associated with four globular clusters: NGC 288, NGC 1261, NGC 1851, and NGC 1904. The ever-growing sample of stellar streams will provide insight into the formation of the Galactic stellar halo, the Milky Way gravitational potential, as well as the large- and small-scale distribution of dark matter around the Milky Way.
There are several supervised machine learning methods used for the application of automated morphological classification of galaxies; however, there has not yet been a clear comparison of these different methods using imaging data, or a investigation for maximising their effectiveness. We carry out a comparison between several common machine learning methods for galaxy classification (Convolutional Neural Network (CNN), K-nearest neighbour, Logistic Regression, Support Vector Machine, Random Forest, and Neural Networks) by using Dark Energy Survey (DES) data combined with visual classifications from the Galaxy Zoo 1 project (GZ1). Our goal is to determine the optimal machine learning methods when using imaging data for galaxy classification. We show that CNN is the most successful method of these ten methods in our study. Using a sample of $sim$2,800 galaxies with visual classification from GZ1, we reach an accuracy of $sim$0.99 for the morphological classification of Ellipticals and Spirals. The further investigation of the galaxies that have a different ML and visual classification but with high predicted probabilities in our CNN usually reveals an the incorrect classification provided by GZ1. We further find the galaxies having a low probability of being either spirals or ellipticals are visually Lenticulars (S0), demonstrating that supervised learning is able to rediscover that this class of galaxy is distinct from both Es and Spirals. We confirm that $sim$2.5% galaxies are misclassified by GZ1 in our study. After correcting these galaxies labels, we improve our CNN performance to an average accuracy of over 0.99 (accuracy of 0.994 is our best result).
The astrophysical neutrinos recently discovered by the IceCube neutrino telescope have the highest detected neutrino energies --- from TeV to PeV --- and travel the longest distances --- up to a few Gpc, the size of the observable Universe. These fea tures make them naturally attractive probes of fundamental particle-physics properties, possibly tiny in size, at energy scales unreachable by any other means. The decades before the IceCube discovery saw many proposals of particle-physics studies in this direction. Today, those proposals have become a reality, in spite of prevalent astrophysical unknowns. We showcase examples of studying fundamental neutrino physics at these scales, including some of the most stringent tests of physics beyond the Standard Model.
We present in this paper one of the largest galaxy morphological classification catalogues to date, including over 20 million of galaxies, using the Dark Energy Survey (DES) Year 3 data based on Convolutional Neural Networks (CNN). Monochromatic $i$- band DES images with linear, logarithmic, and gradient scales, matched with debiased visual classifications from the Galaxy Zoo 1 (GZ1) catalogue, are used to train our CNN models. With a training set including bright galaxies ($16le{i}<18$) at low redshift ($z<0.25$), we furthermore investigate the limit of the accuracy of our predictions applied to galaxies at fainter magnitude and at higher redshifts. Our final catalogue covers magnitudes $16le{i}<21$, and redshifts $z<1.0$, and provides predicted probabilities to two galaxy types -- Ellipticals and Spirals (disk galaxies). Our CNN classifications reveal an accuracy of over 99% for bright galaxies when comparing with the GZ1 classifications ($i<18$). For fainter galaxies, the visual classification carried out by three of the co-authors shows that the CNN classifier correctly categorises disky galaxies with rounder and blurred features, which humans often incorrectly visually classify as Ellipticals. As a part of the validation, we carry out one of the largest examination of non-parametric methods, including $sim$100,000 galaxies with the same coverage of magnitude and redshift as the training set from our catalogue. We find that the Gini coefficient is the best single parameter discriminator between Ellipticals and Spirals for this data set.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا