ﻻ يوجد ملخص باللغة العربية
We present the data release paper for the Galaxy Zoo: Hubble (GZH) project. This is the third phase in a large effort to measure reliable, detailed morphologies of galaxies by using crowdsourced visual classifications of colour composite images. Images in GZH were selected from various publicly-released Hubble Space Telescope Legacy programs conducted with the Advanced Camera for Surveys, with filters that probe the rest-frame optical emission from galaxies out to $z sim 1$. The bulk of the sample is selected to have $m_{I814W} < 23.5$,but goes as faint as $m_{I814W} < 26.8$ for deep images combined over 5 epochs. The median redshift of the combined samples is $z = 0.9 pm 0.6$, with a tail extending out to $z sim 4$. The GZH morphological data include measurements of both bulge- and disk-dominated galaxies, details on spiral disk structure that relate to the Hubble type, bar identification, and numerous measurements of clump identification and geometry. This paper also describes a new method for calibrating morphologies for galaxies of different luminosities and at different redshifts by using artificially-redshifted galaxy images as a baseline. The GZH catalogue contains both raw and calibrated morphological vote fractions for 119,849 galaxies, providing the largest dataset to date suitable for large-scale studies of galaxy evolution out to $z sim 1$.
We present the data release for Galaxy Zoo 2 (GZ2), a citizen science project with more than 16 million morphological classifications of 304,122 galaxies drawn from the Sloan Digital Sky Survey. Morphology is a powerful probe for quantifying a galaxy
We provide a brief overview of the Galaxy Zoo and Zooniverse projects, including a short discussion of the history of, and motivation for, these projects as well as reviewing the science these innovative internet-based citizen science projects have p
Spiral structure is ubiquitous in the Universe, and the pitch angle of arms in spiral galaxies provide an important observable in efforts to discriminate between different mechanisms of spiral arm formation and evolution. In this paper, we present a
Rings are important and characteristic features of disc-shaped galaxies. This paper is the first in a series which re-visits galactic rings with the goals of further understanding the nature of the features and for examining their role in the secular
We present morphological classifications of $sim$27 million galaxies from the Dark Energy Survey (DES) Data Release 1 (DR1) using a supervised deep learning algorithm. The classification scheme separates: (a) early-type galaxies (ETGs) from late-type