ﻻ يوجد ملخص باللغة العربية
Inspired by the success of classical neural networks, there has been tremendous effort to develop classical effective neural networks into quantum concept. In this paper, a novel hybrid quantum-classical neural network with deep residual learning (Res-HQCNN) is proposed. We firstly analysis how to connect residual block structure with a quantum neural network, and give the corresponding training algorithm. At the same time, the advantages and disadvantages of transforming deep residual learning into quantum concept are provided. As a result, the model can be trained in an end-to-end fashion, analogue to the backpropagation in classical neural networks. To explore the effectiveness of Res-HQCNN , we perform extensive experiments for quantum data with or without noisy on classical computer. The experimental results show the Res-HQCNN performs better to learn an unknown unitary transformation and has stronger robustness for noisy data, when compared to state of the arts. Moreover, the possible methods of combining residual learning with quantum neural networks are also discussed.
The high energy physics (HEP) community has a long history of dealing with large-scale datasets. To manage such voluminous data, classical machine learning and deep learning techniques have been employed to accelerate physics discovery. Recent advanc
Operational forecasting centers are investing in decadal (1-10 year) forecast systems to support long-term decision making for a more climate-resilient society. One method that has previously been employed is the Dynamic Mode Decomposition (DMD) algo
We revisit residual algorithms in both model-free and model-based reinforcement learning settings. We propose the bidirectional target network technique to stabilize residual algorithms, yielding a residual version of DDPG that significantly outperfo
For NP-hard combinatorial optimization problems, it is usually difficult to find high-quality solutions in polynomial time. The design of either an exact algorithm or an approximate algorithm for these problems often requires significantly specialize
Graph neural networks (GNNs) are naturally distributed architectures for learning representations from network data. This renders them suitable candidates for decentralized tasks. In these scenarios, the underlying graph often changes with time due t