ترغب بنشر مسار تعليمي؟ اضغط هنا

The economics of stop-and-go epidemic control

88   0   0.0 ( 0 )
 نشر من قبل Claudius Gros
 تاريخ النشر 2020
  مجال البحث اقتصاد فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze stop and go containment policies which produces infection cycles as periods of tight lock-downs are followed by periods of falling infection rates, which then lead to a relaxation of containment measures, allowing cases to increase again until another lock-down is imposed. The policies followed by several European countries seem to fit this pattern. We show that stop and go should lead to lower medical costs than keeping infections at the midpoint between the highs and lows produced by stop and go. Increasing the upper and reducing the lower limits of a stop and go policy by the same amount would lower the average medical load. But increasing the upper and lowering the lower limit while keeping the geometric average constant would have the opposite impact. We also show that with economic costs proportional to containment, any path that brings infections back to the original level (technically a closed cycle) has the same overall economic cost.



قيم البحث

اقرأ أيضاً

Reinforcement learning algorithms describe how an agent can learn an optimal action policy in a sequential decision process, through repeated experience. In a given environment, the agent policy provides him some running and terminal rewards. As in o nline learning, the agent learns sequentially. As in multi-armed bandit problems, when an agent picks an action, he can not infer ex-post the rewards induced by other action choices. In reinforcement learning, his actions have consequences: they influence not only rewards, but also future states of the world. The goal of reinforcement learning is to find an optimal policy -- a mapping from the states of the world to the set of actions, in order to maximize cumulative reward, which is a long term strategy. Exploring might be sub-optimal on a short-term horizon but could lead to optimal long-term ones. Many problems of optimal control, popular in economics for more than forty years, can be expressed in the reinforcement learning framework, and recent advances in computational science, provided in particular by deep learning algorithms, can be used by economists in order to solve complex behavioral problems. In this article, we propose a state-of-the-art of reinforcement learning techniques, and present applications in economics, game theory, operation research and finance.
246 - Matti Estola 2020
During its history, the ultimate goal of economics has been to develop similar frameworks for modeling economic behavior as invented in physics. This has not been successful, however, and current state of the process is the neoclassical framework tha t bases on static optimization. By using a static framework, however, we cannot model and forecast the time paths of economic quantities because for a growing firm or a firm going into bankruptcy, a positive profit maximizing flow of production does not exist. Due to these problems, we present a dynamic theory for the production of a profit-seeking firm where the adjustment may be stable or unstable. This is important, currently, because we should be able to forecast the possible future bankruptcies of firms due to the Covid-19 pandemic. By using the model, we can solve the time moment of bankruptcy of a firm as a function of several parameters. The proposed model is mathematically identical with Newtonian model of a particle moving in a resisting medium, and so the model explains the reasons that stop the motion too. The frameworks for modeling dynamic events in physics are thus applicable in economics, and we give reasons why physics is more important for the development of economics than pure mathematics. (JEL D21, O12) Keywords: Limitations of neoclassical framework, Dynamics of production, Economic force, Connections between economics and physics.
Understanding the epidemic dynamics, and finding out efficient techniques to control it, is a challenging issue. A lot of research has been done on targeted immunization strategies, exploiting various global network topological properties. However, i n practice, information about the global structure of the contact network may not be available. Therefore, immunization strategies that can deal with a limited knowledge of the network structure are required. In this paper, we propose targeted immunization strategies that require information only at the community level. Results of our investigations on the SIR epidemiological model, using a realistic synthetic benchmark with controlled community structure, show that the community structure plays an important role in the epidemic dynamics. An extensive comparative evaluation demonstrates that the proposed strategies are as efficient as the most influential global centrality based immunization strategies, despite the fact that they use a limited amount of information. Furthermore, they outperform alternative local strategies, which are agnostic about the network structure, and make decisions based on random walks.
The use of equilibrium models in economics springs from the desire for parsimonious models of economic phenomena that take human reasoning into account. This approach has been the cornerstone of modern economic theory. We explain why this is so, exto lling the virtues of equilibrium theory; then we present a critique and describe why this approach is inherently limited, and why economics needs to move in new directions if it is to continue to make progress. We stress that this shouldnt be a question of dogma, but should be resolved empirically. There are situations where equilibrium models provide useful predictions and there are situations where they can never provide useful predictions. There are also many situations where the jury is still out, i.e., where so far they fail to provide a good description of the world, but where proper extensions might change this. Our goal is to convince the skeptics that equilibrium models can be useful, but also to make traditional economists more aware of the limitations of equilibrium models. We sketch some alternative approaches and discuss why they should play an important role in future research in economics.
Until a vaccine or therapy is found against the SARS-CoV-2 coronavirus, reaching herd immunity appears to be the only mid-term option. However, if the number of infected individuals decreases and eventually fades only beyond this threshold, a signifi cant proportion of susceptible may still be infected until the epidemic is over. A containment strategy is likely the best policy in the worst case where no vaccine or therapy is found. In order to keep the number of newly infected persons to a minimum, a possible strategy is to apply strict containment measures, so that the number of susceptible individuals remains close to herd immunity. Such an action is unrealistic since containment can only last for a finite amount of time and is never total. In this article, using a classical SIR model, we determine the (partial or total) containment strategy on a given finite time interval that maximizes the number of susceptible individuals over an infinite horizon, or equivalently that minimizes the total infection burden during the curse of the epidemic. The existence and uniqueness of the optimal strategy is proved and the latter is fully characterized. If applicable in practice, such a strategy would lead theoretically to an increase by 30% of the proportion of susceptible on an infinite horizon, for a containment level corresponding to the sanitary measures put in place in France from March to May 2020. We also analyze the minimum intervention time to reach a fixed distance from herd immunity, and show the relationship with the previous problem. Simulations are provided that illustrate and validate the theoretical results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا