ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermi surface chirality induced in a TaSe$_{2}$ monosheet formed by a Ta/ Bi$_{2}$Se$_{3}$ interface reaction

91   0   0.0 ( 0 )
 نشر من قبل Holger Meyerheim L
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin-momentum locking in topological insulators and materials with Rashba-type interactions is an extremely attractive feature for novel spintronic devices and is therefore under intense investigation. Significant efforts are underway to identify new material systems with spin-momentum locking, but also to create heterostructures with new spintronic functionalities. In the present study we address both subjects and investigate a van der Waals-type heterostructure consisting of the topological insulator Bi$_{2}$Se$_{3}$ and a single Se-Ta-Se triple-layer (TL) of H-type TaSe$_{2}$ grown by a novel method which exploits an interface reaction between the adsorbed metal and selenium. We then show, using surface x-ray diffraction, that the symmetry of the TaSe2-like TL is reduced from D$_{3h}$ to C$_{3v}$ resulting from a vertical atomic shift of the tantalum atom. Spin- and angle-resolved photoemission indicates that, owing to the symmetry lowering, the states at the Fermi surface acquire an in-plane spin component forming a surface contour with a helical Rashba-like spin texture, which is coupled to the Dirac cone of the substrate. Our approach provides a new route to realize novel chiral two-dimensional electron systems via interface engineering that do not exist in the corresponding bulk materials.



قيم البحث

اقرأ أيضاً

Transport and torque magnetometry measurements are performed at high magnetic fields and low temperatures in a series of p-type (Ca-doped) Bi$_{2}$Se$_{3}$ crystals. The angular dependence of the Shubnikov-de Haas and de Haas-van Alphen quantum oscil lations enables us to determine the Fermi surface of the bulk valence band states as a function of the carrier density. At low density, the angular dependence exhibits a downturn in the oscillations frequency between $0^circ$ and $90^circ$, reflecting a bag-shaped hole Fermi surface. The detection of a single frequency for all tilt angles rules out the existence of a Fermi surface with different extremal cross-sections down to $24$~meV. There is therefore no signature of a camel-back in the valence band of our bulk samples, in accordance with the direct band gap predicted by $GW$ calculations.
154 - M. Ye , S. V. Eremeev , K. Kuroda 2011
We studied the Ag-intercalated 3D topological insulator Bi$_{2}$Se$_{3}$ by scanning tunneling microscopy/spectroscopy and angle-resolved photoemission spectroscopy, combined with a first principles calculations. We demonstrate that silver atoms depo sited on the surface of Bi$_{2}$Se$_{3}$ are intercalated between the quintuple layer (QL) units of the crystal, causing a expansion of the van der Waals gaps and the detachment of topmost QLs from the bulk crystal. This leads to a relocation (in the real space) of the the topological state beneath the detached quintuple layers, accompanied by the emergence of parabolic and M-shaped trivial bands localized above the relocated topological states. These novel findings open a pathway to the engineering of Dirac fermions shielded from the ambient contamination and may facilitate the realization of fault-tolerant quantum devices.
210 - K. Miyamoto , A. Kimura , T. Okuda 2012
Helical spin textures with the marked spin polarizations of topological surface states have been firstly unveiled by the state-of-the-art spin- and angle-resolved photoemission spectroscopy for two promising topological insulators Bi$_2$Te$_2$Se and Bi$_2$Se$_2$Te. The highly spin-polarized natures are found to be persistent across the Dirac point in both compounds. This novel finding paves a pathway to extending their utilization of topological surface state for future spintronic applications.
707 - Sunghun Kim , M. Ye , K. Kuroda 2011
We have performed scanning tunneling microscopy and differential tunneling conductance ($dI/dV$) mapping for the surface of the three dimensional topological insulator Bi$_{2}$Se$_{3}$. The fast Fourier transformation applied to the $dI/dV$ image sho ws an electron interference pattern near Dirac node despite the general belief that the backscattering is well suppressed in the bulk energy gap region. The comparison of the present experimental result with theoretical surface and bulk band structures shows that the electron interference occurs through the scattering between the surface states near the Dirac node and the bulk continuum states.
Crystalline symmetries have played a central role in the identification of topological materials. The use of symmetry indicators and band representations have enabled a classification scheme for crystalline topological materials, leading to large sca le topological materials discovery. In this work we address whether amorphous topological materials, which lie beyond this classification due to the lack of long-range structural order, exist in the solid state. We study amorphous Bi$_2$Se$_3$ thin films, which show a metallic behavior and an increased bulk resistance. The observed low field magnetoresistance due to weak antilocalization demonstrates a significant number of two dimensional surface conduction channels. Our angle-resolved photoemission spectroscopy data is consistent with a dispersive two-dimensional surface state that crosses the bulk gap. Spin resolved photoemission spectroscopy shows this state has an anti-symmetric spin texture resembling that of the surface state of crystalline Bi$_2$Se$_3$. These experimental results are consistent with theoretical photoemission spectra obtained with an amorphous tight-binding model that utilizes a realistic amorphous structure. This discovery of amorphous materials with topological properties uncovers an overlooked subset of topological matter outside the current classification scheme, enabling a new route to discover materials that can enhance the development of scalable topological devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا