ﻻ يوجد ملخص باللغة العربية
We have performed scanning tunneling microscopy and differential tunneling conductance ($dI/dV$) mapping for the surface of the three dimensional topological insulator Bi$_{2}$Se$_{3}$. The fast Fourier transformation applied to the $dI/dV$ image shows an electron interference pattern near Dirac node despite the general belief that the backscattering is well suppressed in the bulk energy gap region. The comparison of the present experimental result with theoretical surface and bulk band structures shows that the electron interference occurs through the scattering between the surface states near the Dirac node and the bulk continuum states.
Crystalline symmetries have played a central role in the identification of topological materials. The use of symmetry indicators and band representations have enabled a classification scheme for crystalline topological materials, leading to large sca
We theoretically investigate tunneling magnetoresistance (TMR) devices, which are probing the spin-momentum coupled nature of surface states of the three-dimensional topological insulator Bi$_{2}$Se$_{3}$. Theoretical calculations are performed based
Helical spin textures with the marked spin polarizations of topological surface states have been firstly unveiled by the state-of-the-art spin- and angle-resolved photoemission spectroscopy for two promising topological insulators Bi$_2$Te$_2$Se and
Using magneto-infrared spectroscopy, we have explored the charge dynamics of (Bi,Sb)$_2$Te$_3$ thin films on InP substrates. From the magneto-transmission data we extracted three distinct cyclotron resonance (CR) energies that are all apparent in the
We studied the Ag-intercalated 3D topological insulator Bi$_{2}$Se$_{3}$ by scanning tunneling microscopy/spectroscopy and angle-resolved photoemission spectroscopy, combined with a first principles calculations. We demonstrate that silver atoms depo