ﻻ يوجد ملخص باللغة العربية
Is chatbot able to completely replace the human agent? The short answer could be - it depends.... For some challenging cases, e.g., dialogues topical spectrum spreads beyond the training corpus coverage, the chatbot may malfunction and return unsatisfied utterances. This problem can be addressed by introducing the Machine-Human Chatting Handoff (MHCH), which enables human-algorithm collaboration. To detect the normal/transferable utterances, we propose a Difficulty-Assisted Matching Inference (DAMI) network, utilizing difficulty-assisted encoding to enhance the representations of utterances. Moreover, a matching inference mechanism is introduced to capture the contextual matching features. A new evaluation metric, Golden Transfer within Tolerance (GT-T), is proposed to assess the performance by considering the tolerance property of the MHCH. To provide insights into the task and validate the proposed model, we collect two new datasets. Extensive experimental results are presented and contrasted against a series of baseline models to demonstrate the efficacy of our model on MHCH.
Two main approaches for evaluating the quality of machine-generated rationales are: 1) using human rationales as a gold standard; and 2) automated metrics based on how rationales affect model behavior. An open question, however, is how human rational
In recent years, large neural networks for natural language generation (NLG) have made leaps and bounds in their ability to generate fluent text. However, the tasks of evaluating quality differences between NLG systems and understanding how humans pe
The premise of manual keyphrase annotation is to read the corresponding content of an annotated object. Intuitively, when we read, more important words will occupy a longer reading time. Hence, by leveraging human reading time, we can find the salien
Behavioral decision theories aim to explain human behavior. Can they help predict it? An open tournament for prediction of human choices in fundamental economic decision tasks is presented. The results suggest that integration of certain behavioral t
This paper identifies stylistic differences in instruction-giving observed in a corpus of human-robot dialogue. Differences in verbosity and structure (i.e., single-intent vs. multi-intent instructions) arose naturally without restrictions or prior g