ﻻ يوجد ملخص باللغة العربية
The premise of manual keyphrase annotation is to read the corresponding content of an annotated object. Intuitively, when we read, more important words will occupy a longer reading time. Hence, by leveraging human reading time, we can find the salient words in the corresponding content. However, previous studies on keyphrase extraction ignore human reading features. In this article, we aim to leverage human reading time to extract keyphrases from microblog posts. There are two main tasks in this study. One is to determine how to measure the time spent by a human on reading a word. We use eye fixation durations extracted from an open source eye-tracking corpus (OSEC). Moreover, we propose strategies to make eye fixation duration more effective on keyphrase extraction. The other task is to determine how to integrate human reading time into keyphrase extraction models. We propose two novel neural network models. The first is a model in which the human reading time is used as the ground truth of the attention mechanism. In the second model, we use human reading time as the external feature. Quantitative and qualitative experiments show that our proposed models yield better performance than the baseline models on two microblog datasets.
In this paper, we formulate keyphrase extraction from scholarly articles as a sequence labeling task solved using a BiLSTM-CRF, where the words in the input text are represented using deep contextualized embeddings. We evaluate the proposed architect
Keyphrases are capable of providing semantic metadata characterizing documents and producing an overview of the content of a document. Since keyphrase extraction is able to facilitate the management, categorization, and retrieval of information, it h
This paper presents a novel method to generate answers for non-extraction machine reading comprehension (MRC) tasks whose answers cannot be simply extracted as one span from the given passages. Using a pointer network-style extractive decoder for suc
State-of-the-art methods for relation extraction consider the sentential context by modeling the entire sentence. However, syntactic indicators, certain phrases or words like prepositions that are more informative than other words and may be benefici
Is chatbot able to completely replace the human agent? The short answer could be - it depends.... For some challenging cases, e.g., dialogues topical spectrum spreads beyond the training corpus coverage, the chatbot may malfunction and return unsatis