ﻻ يوجد ملخص باللغة العربية
We report on the fate of the quantum Hall effect in graphene under strong laser illumination. By using Floquet theory combined with both a low energy description and full tight-binding models, we clarify the selection rules, the quasienergy band structure, as well as their connection with the two-terminal and multi-terminal conductance in a device setup as relevant for experiments. We show that the well-known dynamical gaps that appear in the Floquet spectrum at $pm,hbarOmega/2$ lead to a switch-off of the quantum Hall edge transport for different edge terminations except for the armchair one, where two terms cancel out exactly. More interestingly, we show that near the Dirac point changing the laser polarization (circular right or circular left) controls the Hall conductance, by allowing to switch it on or off, or even by flipping its sign, thereby reversing the chirality of the edge states. This might lead to new avenues to fully control topologically protected transport.
Indium Arsenide (InAs) near surface quantum wells (QWs) are ideal for the fabrication of semiconductor-superconductor heterostructures given that they allow for a strong hybridization between the two-dimensional states in the quantum well and the one
Recent theoretical work on time-periodically kicked Hofstadter model found robust counter-propagating edge modes. It remains unclear how ubiquitously such anomalous modes can appear, and what dictates their robustness against disorder. Here we shed f
We consider the dephasing rate of an electron level in a quantum dot, placed next to a fluctuating edge current in the fractional quantum Hall effect. Using perturbation theory, we show that this rate has an anomalous dependence on the bias voltage a
Topological insulators are a newly discovered phase of matter characterized by a gapped bulk surrounded by novel conducting boundary states. Since their theoretical discovery, these materials have encouraged intense efforts to study their properties
Topological superconductors represent a phase of matter with nonlocal properties which cannot smoothly change from one phase to another, providing a robustness suitable for quantum computing. Substantial progress has been made towards a qubit based o