ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-dimensional Particle-in-Cell simulations of axisymmetric black hole magnetospheres

218   0   0.0 ( 0 )
 نشر من قبل Kouichi Hirotani
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the temporal evolution of an axisymmetric magnetosphere around a rapidly rotating, stellar-mass black hole, applying a two-dimensional particle-in-cell simulation scheme. Adopting a homogeneous pair production, and assuming that the mass accretion rate is much less than the Eddington limit, we find that the black holes rotational energy is preferentially extracted from the middle latitudes, and that this outward energy flux exhibits an enhancement that lasts approximately 160 dynamical time scales. It is demonstrated that the magnetohydrodynamic approximations cannot be justified in such a magnetically-dominated magnetosphere, because the Ohms law completely breaks down, and because the charge-separated electron-positron plasmas are highly non-neutral. An implication is given regarding the collimation of relativistic jets.

قيم البحث

اقرأ أيضاً

We perform first-principles relativistic particle-in-cell simulations of aligned pulsar magnetosphere. We allow free escape of particles from the surface of a neutron star and continuously populate the magnetosphere with neutral pair plasma to imitat e pair production. As pair plasma supply increases, we observe the transition from a charge-separated electrosphere solution with trapped plasma and no spin-down to a solution close to the ideal force-free magnetosphere with electromagnetically-dominated pulsar wind. We calculate the magnetospheric structure, current distribution and spin-down power of the neutron star. We also discuss particle acceleration in the equatorial current sheet.
In some low-luminosity accreting supermassive black hole systems, the supply of plasma in the funnel region can be a problem. It is believed that a local region with unscreened electric field can exist in the black hole magnetosphere, accelerating pa rticles and producing high energy gamma-rays that can create $e^{pm}$ pairs. We carry out time-dependent self-consistent 1D PIC simulations of this process, including inverse Compton scattering and photon tracking. We find a highly time-dependent solution where a macroscopic gap opens quasi-periodically to create $e^{pm}$ pairs and high energy radiation. If this gap is operating at the base of the jet in M87, we expect an intermittency on the order of a few $r_g/c$, which coincides with the time scale of the observed TeV flares from the same object. For Sagittarius A* the gap electric field can potentially grow to change the global magnetospheric structure, which may explain the lack of a radio jet at the center of our galaxy.
Electron accelerations at high Mach number collision-less shocks are investigated by means of two-dimensional electromagnetic Particle-in-Cell simulations with various Alfven Mach numbers, ion-to-electron mass ratios, and the upstream electron beta_e (the ratio of the thermal pressure to the magnetic pressure). We found electrons are effectively accelerated at a super-high Mach number shock (MA~30) with a mass ratio of M/m=100 and beta_e=0.5. The electron shock surfing acceleration is an effective mechanism for accelerating the particles toward the relativistic regime even in two dimensions with the large mass ratio. Buneman instability excited at the leading edge of the foot in the super-high Mach number shock results in a coherent electrostatic potential structure. While multi-dimensionality allows the electrons to escape from the trapping region, they can interact with the strong electrostatic field several times. Simulation runs in various parameter regimes indicate that the electron shock surfing acceleration is an effective mechanism for producing relativistic particles in extremely-high Mach number shocks in supernova remnants, provided that the upstream electron temperature is reasonably low.
We present first-principles relativistic particle-in-cell simulations of the oblique pulsar magnetosphere with pair formation. The magnetosphere starts to form with particles extracted from the surface of the neutron star. These particles are acceler ated by surface electric fields and emit photons capable of producing electron-positron pairs. We inject secondary pairs at locations of primary energetic particles, whose energy exceeds the threshold for pair formation. We find solutions that are close to the ideal force-free magnetosphere, with the Y-point and current sheet. Solutions with obliquities $lt 40^{circ}$ do not show pair production in the open field line region, because the local current density along magnetic field is below the Goldreich-Julian value. The bulk outflow in these solutions is charge separated, and pair formation happens in the current sheet and return current layer only. Solutions with higher inclinations show pair production in the open field line region, with high multiplicity of the bulk flow and the size of pair-producing region increasing with inclination. We observe the spin-down of the star to be comparable to MHD model predictions. The magnetic dissipation in the current sheet ranges between 20% for the aligned rotator and 3% for the orthogonal rotator. Our results suggest that for low obliquity neutron stars with suppressed pair formation at the light cylinder, the presence of phenomena related to pair activity in the bulk of the polar region, e.g., radio emission, may crucially depend on the physics beyond our simplified model, such as the effects of curved space-time or multipolar surface fields.
This is the second paper in a series where we examine the physics of pair producing gaps in low-luminosity accreting supermassive black hole systems. In this paper, we carry out time-dependent self-consistent fully general relativistic 1D PIC simulat ions of the gap, including full inverse Compton scattering and photon tracking. Similar to the previous paper, we find a highly time-dependent solution where a macroscopic vacuum gap can open quasi-periodically, producing bursts of $e^pm$ pairs and high energy radiation. We present the light curve, particle and photon spectra from this process. Using an empirical scaling relation, we rescale the parameters to the inferred values at the base of the jet in M87, and find that the observed TeV flares could potentially be explained by this model under certain parameter assumptions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا